DESCRIPTION

The 10139 is organized as an array of 32 words and 8 bits. The initial unprogrammed state is 0 (low). The user may program 1's to obtain any desired pattern. Outputs go to the 0 (low) state when the chip enable input is high, allowing wired-OR output connections. A 50Ω output drive capability makes the part suitable for use in high performance ECL systems.

FEATURES

- Access time: 15ns typ
- Power dissipation: 580mW typ
- Field programmable (Ni-Cr link)
- Fully decoded
- High impedance inputs ($50 \mathrm{k} \Omega$ pulldown)
- Open emitter outputs (50Ω drive)
- Fully compatible with Signetics ECL 10K products

APPLICATIONS

- Programmable logic
- Control stores
- Microprogramming
- Hardwired algorithms

RECOMMENDED OPERATING VOLTAGE

- $V_{C C}=G N D, V_{E E}=-5.2 V \pm 5 \%$

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
$\mathrm{T}_{\text {A }} \quad$Temperature range Operating	-30 to +85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $V_{C C}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $-2 \mathrm{~V}, \mathrm{Vdc} \pm 1 \%$

PARAMETER		TEST CONDITIONS	$-30^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNIT	
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max			
VIL V_{IH} VILA VIHA	Input voltage Low High Low threshold High threshold			$\begin{aligned} & -1.890 \\ & -1.205 \end{aligned}$		$\begin{aligned} & -0.890 \\ & -1.500 \end{aligned}$	$\left\|\begin{array}{c} -1.850 \\ -1.105 \end{array}\right\|$		$\begin{aligned} & -0.810 \\ & -1.475 \end{aligned}$	$\left.\begin{aligned} & -1.825 \\ & -1.035 \end{aligned} \right\rvert\,$		$\begin{aligned} & -0.700 \\ & -1.440 \end{aligned}$	V
Vol Voh	Output voltage Low High	$\mathrm{V}_{\mathrm{IH}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Min}$	$\begin{aligned} & -1.89 \\ & -1.06 \\ & \hline \end{aligned}$		$\begin{array}{\|} -1.675 \\ -0.89 \\ \hline \end{array}$	$\begin{aligned} & -1.85 \\ & -0.96 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.70 \\ -0.89 \\ \hline \end{array}$	$\begin{array}{r} -1.65 \\ -0.81 \\ \hline \end{array}$	$\begin{array}{\|c} -1.825 \\ -0.89 \\ \hline \end{array}$		$\begin{array}{\|l} -1.615 \\ -0.70 \\ \hline \end{array}$	v	
VOLA Voha	Low threshold High threshold	$\mathrm{V}_{\text {IHA }}=\mathrm{Min}, \mathrm{V}_{\text {ILA }}=$ Max	-1.08		-1.655	-0.98		-1.63	-0.91		-1.595		
$\begin{aligned} & \mathrm{IL} \\ & \mathrm{IH} \\ & \hline \end{aligned}$	Input current Low High	$\begin{aligned} V_{I L} & =\operatorname{Min} \\ V_{I H} & =\operatorname{Max} \end{aligned}$	\cdots			0.5		265				$\mu \mathrm{A}$	
lee	Power supply drain current						110	145				mA	

AC ELECTRICAL CHARACTERISTICS $V_{C C}=2 V, R_{L}=50 \Omega$ to ground, $-30^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-3.2 \mathrm{~V}$

PARAMETER	TO	FROM	LIMITS			UNIT
			Min	Typ	Max	
Access time TAA Tce	Output Output	Address Chip enable		$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 22 \\ & 17 \end{aligned}$	ns
$T_{C D} \text { Disable time }$	Output	Chip disable		10	17	ns
Rise and fall time \mathbf{t}_{+} Rise time $(20-80 \%)$ \mathbf{t}_{-} Fall time $(20-80 \%)$				$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		ns

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

CHIP ENABLE/DISABLE TIMES

Input pulse conditions: $\mathrm{V}_{\mathrm{Q}}=0.31 \mathrm{~V}, \mathrm{~V}_{1}=1.11 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=2 \mathrm{~ns}$ (20 to 80%), $t_{f}=2$ ns (20 to 80%)

NOTES

1. Dc and ac specifications apply after thermal equilibrium has been established, with transverse air flow greater than 500 linear $\mathrm{ft} / \mathrm{min}$.
2. For ac tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable. Wire length should be < $1 / 4$ inch from TPin to input pin and TPout to output pin. A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground.
3. Test procedures are shown for only 1 input or set of input conditions. Other inputs are tested in the same manner.

PROGRAMMING SYSTEMS SPECIFICATIONS

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		Min	Typ	Max			
VCCP Vccv	Power supply voltage To program To verify			$\begin{gathered} 11.5 \\ 5.0 \end{gathered}$	$\begin{gathered} 12.0 \\ 5.2 \end{gathered}$	$\begin{gathered} 12.5 \\ 5.4 \end{gathered}$	V
Iccp	Programming supply current	$\mathrm{V}_{\mathrm{CC}}=12.0 \mathrm{~V}$			250	mA	
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Address voltage High Low		$\begin{gathered} 4.0 \\ 0 \end{gathered}$		$\begin{aligned} & 4.6 \\ & 1.0 \end{aligned}$	V	
$\begin{aligned} & \text { lop } \\ & t_{p} \end{aligned}$	Max time at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCP}}$ Output programming current Output program pulse width Output pulse rise time		$\begin{gathered} 3.75 \\ 0.5 \end{gathered}$	4.25	$\begin{gathered} \hline 1.0 \\ 4.75 \\ 1.0 \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{sec} \\ \mathrm{~mA} \\ \mathrm{~ms} \\ \mu \mathrm{~s} \end{gathered}$	
$\begin{aligned} & t_{d} \\ & t_{d 1} \end{aligned}$	Programming pulse delay* Following VCc change Between output pulses		$\begin{gathered} 0.1 \\ 0.01 \end{gathered}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ms	

- Maximum is specified to minimize the amount of time $V_{C C}$ is at 12 V .

PROGRAMMING PROCEDURE

The 10139 is shipped with all bits at logical low. To program logical high's, proceed as follows:

1. Connect a $7.5 \mathrm{k} \Omega$ resistor from each output to ground. This prevents crosstalk into unselected outputs during programming.
2. Connect pin $8\left(V_{E E}\right)$ to ground and pin 16 (VCc) to +5.2 V .
3. Address the desired word location using 0 to 1.0V for a logic low and 4.0 to 4.6 V for a logic high.
4. Raise Vcc to 12 V . Wait $100 \mu \mathrm{~s}$ (min) for
settling. Maximum time at 12 V is 1.0 sec .
5. Apply a +4.25 mA current pulse to the first output to be programmed. Output pin voltage will be approximately 1.2 V above $V_{C C}$, and the $7.5 \mathrm{k} \Omega$ resistor will take 1.75 mA . Pulse duration is 0.5 to 1.0 ms . Other outputs may be programmed sequentially using a delay of .01 to 1.0 ms between current pulses.
6. Return Vcc to 5.2 V and verify the word. Repeat step 5 once only if any bit failed to program.
7. Repeat steps $3,4,5$ and 6 for all address locations to be programmed.
8. Verify complete truth table.

TYPICAL FUSING PATH

