256-BIT ECL HIGH PERFORMANCE PROM (32X8)

10139-F,N

10139

DESCRIPTION

The 10139 is organized as an array of 32 words and 8 bits. The initial unprogrammed state is 0 (low). The user may program 1's to obtain any desired pattern. Outputs go to the 0 (low) state when the chip enable input is high, allowing wired-OR output connections. A 50Ω output drive capability makes the part suitable for use in high performance ECL systems.

FEATURES

- Access time: 15ns typ
- Power dissipation: 580mW typ
- Field programmable (Ni-Cr link)
- Fully decoded
- High impedance inputs (50kΩ pulldown)
- Open emitter outputs (50 Ω drive)
- Fully compatible with Signetics ECL 10K products

APPLICATIONS

- Programmable logic
- Control stores
- Microprogramming
- Hardwired algorithms

RECOMMENDED OPERATING VOLTAGE

• $V_{CC} = GND, V_{EE} = -5.2V \pm 5\%$

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Temperature range T _A Operating	-30 to +85	°C

PIN CONFIGURATION

256-BIT ECL HIGH PERFORMANCE PROM (32X8)

10139-F,N

10139

DC ELECTRICAL CHARACTERISTICS $V_{CC} = 0V$, $V_{EE} = -5.2V$, $R_L = 50\Omega$ to -2V, $Vdc \pm 1\%$

PARAMETER		TEST CONDITIONS	-30° C		+25°C		+85° C					
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UNIT
Vil Vih Vila Viha	Input voltage Low High Low threshold High threshold		-1.890 -1.205	-	-0.890 -1.500	-1.850 -1.105		-0.810 -1.475	-1.825 -1.035	-	-0.700 -1.440	
	Output voltage Low High	VIH = Max, VIL = Min	-1.89 -1.06		-1.675 -0.89	-1.85 -0.96	-1.70 -0.89	-1.65 -0.81	-1.825 -0.89		-1.615 -0.70	V
VOHA	High threshold	$V_{IHA} = Min, V_{ILA} = Max$	-1.08		1.000	-0.98		1.00	-0.91		1.000	
lı∟ fı∺	Input current Low High	V _{IL} = Min V _{IH} = Max	(100)	-sit		0.5		265				μA
IEE	Power supply drain current						110	145				mA

AC ELECTRICAL CHARACTERISTICS $V_{CC} = 2V$, $R_L = 50\Omega$ to ground, $-30^{\circ}C \le T_A \le 85^{\circ}C$, $V_{EE} = -3.2V$

DADAMETER	TO	EDOM		LINIT		
PARAMETER	10	FNUM	Min	Тур	Max	UNIT
Access time						ns
TAA	Output	Address		15	22	
TCE	Output	Chip enable		10	17	
Disable time						ns
T _{CD}	Output	Chip disable		10	17	
Rise and fall time						ns
t+ Rise time (20-80%)				4.0		
t- Fall time (20-80%)				4.0		

256-BIT ECL HIGH PERFORMANCE PROM (32X8)

TEST LOAD CIRCUIT

10139

10139-F,N

NOTES

- Dc and ac specifications apply after thermal equilibrium has been established, with transverse air flow greater than 500 linear ft/min.
- 2. For ac tests, all input and output cables to the scope are equal lengths of 50 Ω coaxial cable. Wire length should be < 1/4 inch from TP_{IN} to input pin and TP_{OUT} to output pin. A 50 Ω termination to ground is located in each scope input. Unused outputs are connected to a 50 Ω resistor to ground.
- 3. Test procedures are shown for only 1 input or set of input conditions. Other inputs are tested in the same manner.

PROGRAMMING SYSTEMS SPECIFICATIONS

PARAMETER		TEST CONDITIONS	Min	Min Typ Max			
VCCP VCCV	Power supply voltage To program To verify		11.5 5.0	12.0 5.2	12.5 5.4	v	
ICCP	Programming supply current	$V_{CC} = 12.0V$			250	mA	
V1H VIL	Address voltage High Low		4.0 0		4.6 1.0	v	
l _{OP} t _p	Max time at V _{CC} = V _{CCP} Output programming current Output program pulse width Output pulse rise time		3.75 0.5	4.25	1.0 4.75 1.0 10	sec mA ms μs	
td td1	Programming pulse delay* Following V _{CC} change Between output pulses		0.1 0.01		1.0 1.0	ms	

*Maximum is specified to minimize the amount of time V_{CC} is at 12V.

95

10139

PROGRAMMING PROCEDURE

The 10139 is shipped with all bits at logical low. To program logical high's, proceed as follows:

- 1. Connect a $7.5 k\Omega$ resistor from each output to ground. This prevents crosstalk into unselected outputs during programming.
- 2. Connect pin 8 (VEE) to ground and pin 16 (VCC) to +5.2V.
- 3. Address the desired word location using 0 to 1.0V for a logic low and 4.0 to 4.6V for a logic high.
- 4. Raise Vcc to 12V. Wait $100\mu s$ (min) for

settling. Maximum time at 12V is 1.0 sec.

- Apply a +4.25mA current pulse to the first output to be programmed. Output pin voltage will be approximately 1.2V above V_{CC}, and the 7.5kΩ resistor will take 1.75mA. Pulse duration is 0.5 to 1.0ms. Other outputs may be programmed sequentially using a delay of .01 to 1.0ms between current pulses.
- Return V_{CC} to 5.2V and verify the word. Repeat step 5 once only if any bit failed to program.
- 7. Repeat steps 3, 4, 5 and 6 for all address locations to be programmed.
- 8. Verify complete truth table.

TYPICAL FUSING PATH

