

general description

The pALCEI $\sigma \cup$ is an advanced pAL device built with low-power, high-speed. electrically-erasable CMOS technology. It is functionally compatible with all 20-pin Gal devices. The macrocells provide a universal cevice architecture. The palceiovg will directly reglace the PAL 16 A8 and PAL10H8 series devices, with the exception of the PAL1EC1

The PalCE1ôb utilizes the familiar sum-af-products (ANO/OR) architecture that allows users to implement complex logic functions easily and efficiently. Nuthiple levels of combinatorial logic can always be reduced to sum-af-products form, laking advantage of the very wide input gates available in Pal devices. The eguations are grogrammed into the cevice through hoating gate cells in the AND logic array that can be arased electrically.
The fixed OR array allows up to eight data product ierms per output ior lo gic functions. The sum of these preducts
teads the cutput macrocell. Each macrecell can be programmed as :E gistered or combinatorial with an acivehigh or active-tow output. The output contiguration is determined by two global bits and one local bit controlling four multiclexers in each macrocell.

AMD's FusionFLD program allows PALCE15V8 designs to be implemented using a wide vanety of popular industry-siandard design tools. By working c!osely with the Fusionflo gerners. AMD certifies that the tools provide accureie, quality support. By gnsuring that thirdperty fools are available, cosis are lowered because a designer coes ricl have to buy a complete set ot new lools for each cevice. The FusioniPLD program also graally racuces design time since a designer can use a 1001 that is arready insialled and familiar. Flease referto the PLD Sotiware Reterenca Guide for centified Cevelopment systems and the Programmer Reterence Guice for apcroved grocrammers.

ORDERING INFORMATION
Commercial Products
AMD programmable logic products for. commercial applications are available with several crcaring options. The order number (Valid Combination) is tormed by a combination of:

Valld Combinations		
PALCE16V8H-7	PC, JC	15
PALCE16V8H-10	PC.JC, SC	14,15
PALCE16V8H-15	PC, JC. SC	
PALCE16V8H-25	Blank	
PALCE16V8Q-15		14
PALCE16V8O-25	PC, JC	

Valld Combinations

The Valid Combinations table lists configurations planned ic ca supoorted in volume tor this davica. Consult in: local AMO sales office io confirm availability of scecific yalid combinations and to check on nawiy released combinations.

Note: Markad with AMD kogo.

ORDERING INFORMATION

APL Products (Military):.
AMO programmable logic products for Aerospace and Defense apolications ara available with several ordering coticns. APL (Approved Products List) products are fully compliant with MIL-STD-893 requiremeris. The order number (Valid Comoination) is formed by a combination of:

Valld Combinations		
PALCE16V8H-10	E5	
PALCE16V8H-15	E4. E5	日GRA
PALCE16V8H-20	Blank.	/82A
PALCE16V8H-25	E4	

Valld Comblnations

The Valid Combinations table lists configurations planned to be supported in volume for this device. planned the supported in valume for his cavice. ayaitacility of spacific valid cambinations, to check on newly released combinations and io obtain additional data on AMD's standard military graca praducts.

Note: Markad with AMO logo.

Group A Tasts

Group A lests consist of Subgroups $1,2,3,7,8,9,10,11$.

Milltary Eum-In
Miftary bum-in is in aconedance with the current revision of MIL-STO-883. Test Method 1015. Canditions A inrough E. Test conditions are selected at AMD's option.

7 amo
FUNCTIONAL DESCRIPTION
The PALCEtaV8 is a universal PAL device. It has eight independently contigurable macrocells ($\mathrm{MC}_{3}-\mathrm{MC}$) Each macrocell can be contigured as registered output, combinatorial output. combinatorial $1 / 0$ or dedicated input. The programming matrix implements a programmable ANO logic array, which drives a fixed OR logic array. Buffers for device inputs have complementarf outputs to provide user-programmable ingut signal polarity. Pins 1 and 11 serve either as array inpuls or as clock ($C(X)$ and output enable ($\overline{O E}$), respectively, for all flip-flops.

Unused input pins should be tied directly to. Vcc or GND. Product terms with all bits ungrogrammed (disconnected) assume the logical HIGH state and product terms with both true and complement of any input signal connected assume a logical LOW state.

The programmable functions on the PALCE16V8 are automatically configured from the user's design specifi-
cation, which can ioe in a number of formats. The design specificalion is processed by development sottware to verify the design and create a programming file. This file, once cownloadect io a programmer, contigures ine device according to the user's desired function.
The user is given iwo design options with the PALCE16V8. Firsi, ilcan be programmed as a standard PAL device from ine FAL16R8 and PAL10H8 series. The PAL progremmer manufacturer will supply device codes for the stancard pal device architectures to be used with the PALCEIoV8. The programmer will program ine PALCE1ovs in the corrasponding architec. lure. This allows the user to use existing standard PAL device JEDEC files without making any changes to them. Altematively, ine device can be programmed as a PALCEI6V8. Hera the usermustuse the PALCE16Va device code. This oction allows full utilization of the macrocell.

-In macroceils MCo and MC, SG, is replaced by $\overline{S G O}$ on the leedback multiplexer.
$14 \pm 68 C-601 A$

PALCE16V8 Macrocall

Configuration Options

Each macrocell can be configured as one of the follow ing: registered output, combinatorial output, combinato rial $1 / O$, or dedicated input. In the registered output configuration, the output buffer is enabled by the $\overline{O E}$ pin. In the combinatorial configuration, the buffer is either controlled by a product term or always enabled. In the dedicated input configuration, it is always disabled. With the exception of $M C_{0}$ and $M C_{7}$, a macrocell configured as a dedicated input derives the input signal from an adjacent V/O. MCo derives its input from pin $11(\mathrm{OE})$ and MC_{7} from pin 1 (CLK).
The macrocell configurations are controlled by the configuration control word. It contains 2 global bits (SGO and SG1) and 16 local bits (SLOo through SLO and SL10 through SL17). SGO determines whether registers will be allowed. SG1 determines whether the PALCE16V8 will emulate a PAL 16 R8 family or a PAL 10 H 8 family device. Within each macrocell, SLOx, in conjunction with SG1, selects the configuration of the macrocell, and SLIx sets the output as either active low or active high for the individual macrocell
The configuration bits work by acting as control inputs for the multiplexers in the macrocell. There are four multiplexers: a product term input, an enable select, an outout select, and a feedback select multiplexer. SG1 and SLOx are the control signals for all four multiplexers. In $M C_{0}$ and MC_{7}, SGO replaces SG 1 on the feedback multiplexer. This accommodates CLK being the adjacent pin for MC_{7} and OE the adjacent pin for MCo .

Registered Output Configuration

The control bit settings are SGO $=0, S G 1=1$ and $S L O_{x}=$ 0 . There is only one registered contiguration. All eight product terns are available as inputs to the or gate. Data polarity is determined by SL1x. The flip-flop is loaded on the LOW-to-HIGH transition of CLK. The feedback path is from \bar{Q} on the register. The output buffer is enabled by $\overline{O E}$

Combinatorial Configurations

The PaLCEt6V8 has three combinatorial output configurations: dedicated output in a non-registered device, I/O in a non-registered device and 1/O in a registered device.

Dedicated Output In a Non-Registered Device

The control bit settings are SGO $=1$, SG $1=0$ and SLO $=$ 0 . All eight product terms are available to the OR gate. Although the macrocell is a dedicated output, the leedback is used, with the exception of pins 15 and 16 . Pins 15 and 18 do not use feecback in this. mode. Secause CLK and OE are not used in a non-registered device. pins 1 and 11 are available as inpur signals. Pin 1 will use the feedback path of MC_{7} and pin 11 will use the leedback path of MCo.

Combinatorial $1 / O$ In a Non-Registered Device

The control oit seltings are $S G O=1, S G 1=1$, and $S L O_{x}=$ 1. Only seven product terms are available to the OR gate. The eighth groduct term is used to enable the output butter. The signal at the $/ / O$ pin is fed back to the ANO array via the teedback multiplexer. This allows the pin to be used as an input
Because CLK and $\overline{O E}$ are not used in a non-registered device, pins 1 and 11 are available as inouts. Pin 1 will use the feectack path of $M C_{7}$ and oin 11 will use the leedback pain oi inco.

Combinatorial $1 / O$ in a Registered Device

The control bit setings are $S G O=0, S G 1=1$ and $S L O_{x}=$ 1. Only seven product terms are available to the OR gate. The sighth product term is used as the output enable. The feedback signal is the corresponding $1 / O$ signal.

Dedicated Input Configuration

The control bit settings are $\mathrm{SGO}=1, S G 1=0$ and $S L O x=$ 1. The output buffer is disabled. Except for MCo and MC7 the feedback sicnal is an adjacent $/ / \mathrm{O}$. For MCo_{0} and MC_{7} the feedback signals are pins 1 and 11. These configu rations are summarized in Table 1 and illustrated in Figure 2.

Table 1. Macrocell Configuration

SGO	SG1	SLOX	Cell Configuration	Devices Emulated
Device Uses Registers				
0 0	1	0	Registered Output Combinaiorial $1 / 0$	PAL16R8. 16R6, $16 R 4$ PAL16AE 18R4
Device Uses No Registers				
1	0	0	Combinatorial Output	PAL10H8, 1246, 14H4. 16H2, 10L8. 12L6, 14L4, 16L2
1	0	1	Inout	PAL12HE, 14H4. 1642. 12L6. 14 L 4. 16L2
1	1	1	Combinatorial 10	FALIELS

Programmable Output Polarity

The polarity of each macrocell can be active-high or ac live-low, either io match output signal needs or io reduce produc: terms. Programmable polarity allows Goclean expressions to be written in their most compact form (true or invered), and the output can still be of the desired polarit. Il can also save "Demorganizing" effors.

Selection is inrough a programmable bit SLIx which controls an exclusive-OR gate at the output of the AND OR logic. The cutput is active high if SL 1_{x} is 1 and active low if SLI , is is

Figure 2. Macrocell Configurations

Power-Up Reset

Allflip-flops power up to a logic LOW for predictable system initialization. Outputs of ine. PALCE1GVa will depend on whether they are selected as registered or combinatorial. If registered is selected, the output will be HIGH. If combinatorial is selected, the output will be a function of the logic.

Register Preload

The register on ine PALCEIGV8 can be prelo aded from the output pins to facilitate functional testing of complex state machine designs. This teature allows direct loading of arbitrary states, making it unnecessary to cycle through long test vector sequences to reach a desired state. In addition, transitions fromillegal states can be verified by loading illegal states and observing proper recovery.

Security Bit

A security bit is provided on the PALCE16V8 as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit deleats reacback and verification of the programmed pattern by a device programmer, securing proprietary designs from competitors. The bit can only be erased in conjunction with the array during an erase cycle.

Electronic Signature Word

An electronic signature word is provided in the PALCE18V8 device. It consists of 84 bits of programmable memory that can contain user-defined data. The signature data is always available to the user independent of the security bit.

Programming and Erasing

The PALCE16V8 can be programmed on standard logic programmers. It also may be erased to reset a previously configured device back to its virgin state. Erasure is automatically pertormed by the programming hardware. No special erase operation is required.

Quality and Testability
The PALCE16V8 offers a very high level of built-in qual ity. The erasability of the device provides a direct means of verifying periormance of all AC and OC parameters In addition, this verifies complete programmability and functionality of the devica to provide the highest programming yields and post-programming functiona yields in the industry.

Technology
The hign-speed PALCE18V8 is fabricated with AMO's advanced electrically erasable ($E E$) CMOS process The array connections are formed with proven EE cells. inputs and outputs are designed to be compatible with TTL devices. This technology provides strong input clamp diodes. output slew-rate control, and a grounded substrate for clean switching.

LOGIC DIAGRAM (Continued)

IT AMO

Strassas above those listed under Absolute Maximum Rat－ ings may causa permanent device failura．Functionality at or above ihese limits is not implied．Exposure to Absolute Maxi－ mum fatings lor extended periods may aftect device reliabil－ ity．Programming conditions may differ．
DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min．	Max．	UnIt
VOH	Output HIGH Voliage	$\begin{array}{ll} I_{C H}=-3.2 \mathrm{~mA} & V_{I N}=V_{I H} \text { or } V_{I L} \\ V_{C C}=M \mathrm{Min} . & \end{array}$	2.4.		\checkmark
Vol	Output LOW Voltage	$\begin{array}{ll} \mathrm{I}_{\mathrm{L}}=24 \mathrm{~mA} & V_{I N}=V_{I H} \text { or } V_{i L} \\ V_{c C}=\mathrm{Min} . & \end{array}$		0.5	V
$V_{\text {IH }}$	Input HIGH Voltage	Guaranteed Inout Logical HIG＇H Voltage for all inputs（Nole 1）	2.0		V
VIL	Incut LOW Voltage	Guaranteed Input Logical LOW Voltage for all inputs（Nole 1）		0.8	V
$1 / \mathrm{H}$	Input HIGH Leakage Current	$V_{i N}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=$ Miax．（ Note 2）		10	赈
11.	Inout LOW Leakage Current	$V_{\text {IN }}=0 \mathrm{~V}, V_{c c}=$ Max．（ Note 2）		－100	出
102．4	Off－State Output Leakage Current HIGH	$V_{\text {cut }}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}=\mathrm{Max}$. $V_{I N}=V_{1 H}$ or $V_{I L}$（Note 2）		10	$\mu \mathrm{A}$
loz	Off－State Output Leakage Current LOW	$V_{\text {OUT }}=O V, V_{C C}=$ Miax． $V_{I N}=V_{I H}$ or $V_{I L}$（Nole 2）		－100	出
Isc	Output Shor－Circuit Current	$V_{\text {Out }}=0.5 \mathrm{~V} \quad V_{\text {cc }}=$ Max．（Ncte 3）	－30	－150	mA
les	Supply Current（Dynamic）	Outputs Open（lout $=0 \mathrm{~mA}$ ） VCc $=$ Max．， $1=25 \mathrm{MHZ}$		115	$m A$

Notes：
1．These are absolute values with respect to device ground and all overshcets due io sysiem or tester ncise ara inclucac．
2．VO oin leakace is the worst casa of lin and lozk（or lif and lozt）．
3．Not mora than cre output should be shored at a time and duration of the shor－circirit should nar exceed ane secand． Vout $=0.5 V$ has been chosen to avoid tast problems caused dy rester ground degradation．

CADACITANCE (Note 1)

Parameter Symbol	Paramater Desicriptions	Test Conditions		Typ.	Unit
CH	Input Capacitance	$V_{1 N}=2.0 \mathrm{~V}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \\ & f=1 \mathrm{MH} \mathrm{Z} \end{aligned}$	5	pF
Car	Output Capactance	$\mathrm{Var}=2.0 \mathrm{~V}$		8	pF

Note:

1. These parameters are not 100% lestod, but are ovaluatad at intial characterization and at any time the design is mocifiod where capacitanca may be affoctod.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			M1n.	Max.	Unit
tpo	Input or Feedback to Combinatorial Output		8 Outputs Switching		7.5	ns
			1 Output Switching		7	ns
ts	Setup Time from Input or Feedback to Clock			5		
i	Hold Time			0		ns
tco	Clock to Output				5	ns
tim.	Clock Width	LOW		4		ns
TWH		HIGH		4		ns
trax	Maximum Frequency (Note 3)	Extemal Feed	$1 /(\mathrm{ss+ico})$	100		MHz
		Intemal Feedb		125		
		No Feedback	1/(twhtion)	125		MHz
tpIX	$\overline{\mathrm{OE}}$ to Output Enable				6	ns
tpxz	OE to Output Disable				6	ns
tea	Input to Output Enable Using Product Term Control				9	ns
ter	Input to Output Disable Using Product Term Control				9	ns

Notes:

2. See Switching Test Circuit for test concitions.
3. These parameters are not 100% tested, but are calculated at initial characierization and at any time the design is medfied where frequency may be affecied.

jeressas above thosa listed under Absolure Maximum Rat ngs may cause permanent device ralure. Functionahty at or Gove these limits is not imolied. Exposure to Absolute Maximm Ratings for uxienced periods may affect devica relizoiaffect device reliabil ity. Programming conditions may differ.
DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vor	Output HIGH Voltage	$\begin{aligned} & V_{O H}=-3.2 \mathrm{~mA} \quad V_{I N}=V_{I H} \text { or } V_{i L} \\ & V_{C C}=M i n . \end{aligned}$	2.4		V
VaL	Output LOW Voltage	$\begin{array}{ll} I_{C L}=24 \pi A & V_{I N}=V_{I H} \text { or } V_{i l} \\ V_{C C}=M i n . & \end{array}$		0.5	V
VIM	Input HIGH Voltage	Guaranteed Inpul Logical HIG:H Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
1114	Input HIGH Leakage Current			10	$\mu \mathrm{H}$
11.	Input LOW Leakage Current	$V_{\text {IN }}=0 \mathrm{~V}, \mathrm{VCC}=$ Max. (Nole 2)		-10	UA
102\%	Off-State Output Leakage Current HIGH	$\begin{aligned} & V_{\text {Out }}=5.25 \mathrm{~V}, V_{C C}=\mathrm{Max} \\ & V_{\mathrm{IN}}=V_{I H} \text { or } V_{\text {IL }}(\text { Note } 2) \end{aligned}$		10	$\cup 4$
1082	Oft-State Output Leakage Current LOW	$\begin{aligned} & V_{\text {OUT }}=0 \text { V. } V_{C C}=\text { Max. } \\ & \left.V_{\text {N }}=V_{\text {IH }} \text { or } V_{\text {IL }} \text { (Note } 2\right) \end{aligned}$		-10	$\mu 4$
Isc	Qutput Snors-Circuit Current	Vout $=0.5 \mathrm{~V} \quad$ Vcc = Max. (Ncia 3$)$	-30	-150	$m A$
lce	Supply Current (Oynamic)	Outputs Open (lout $=0 \mathrm{~mA}$) VCc = Max., $1=25 \mathrm{MHz}$		115	mA

Notes:

1. These are absolute values with respect to device ground and all overshecrs due io sy si=m or lester noisa are included
2. Vo pin leakage is the worst casa of in and lozt (ar lat and loz-4).
3. Nat more than one autput should be shorted at a time and duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid iest problems caused by lester ground degracation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Descriptions	Test Conditions		Typ.	Unit
CiN	Input Capacitance	$V_{i N}=2.0 \mathrm{~V}$	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$, $1=1 \mathrm{MHz}$	5	of
CaUt	Output Capacitance	$V_{\text {CuT }}=2.0 \mathrm{~V}$	8	of	

Note:

1. These garameters are not 100% tested, but are svaluated at initial charac:arization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbal	Parameter Description			Min.	Max.	Unit
tpo	Input or Feedback to Combinatorial Output				10	ns
ts	Setup Time from Input or Feedback to Clock			7.5		
H_{4}	Hold Time			0		ns
100	Clock to Output				7.5	ns
ims	Clock Width	LOW		6		ns
:war		HIGH		6		ns
$t_{\text {max }}$	Maximum Frequency (Note 3)	External Feed	1/(ts+lco)	86.7		MHz
		Intemal Feedb		71.4		MHz
		No Feedback	1/(twh+im)	83.3		MHz
tazx	$\overline{O E 10} 10$ Output Enable				10	ns
tprz	$\overline{O E}$ io Output Disable				10	ns
tea	Incut to Output Enable Using Product Term Control				10	ns
เモ®	Incut to Output Disable Using Product Term Control				10	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% lested, but are calculated at initial charac:erization and at any time the design is modified where frequenc! may be affected.

Notes:

1. These are absoluta values with respect to devica ground and all overshocts due ic sijsiem or tester ncisa are included.
. VO pin leakage is the worst case of lic and lozl (or lis and loz-1).
2. Not mora than one output should be shorted at a time and duration of the short-circisit should not axceed ona sacond. Vout $=0.5 V$ has been chosen to avoid test problems caused by taster ground deçradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Descriptions	Test Conditions		Typ.	Unit
Cin	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$	$V_{C C}=5.0 \mathrm{~V} . T_{A}=25^{\circ} \mathrm{C}$,	5	pF
Cout	Outpul Capacitance	Vout $=2.0 \mathrm{~V}$	$1=1 \mathrm{miz}$	8	pF

Note:

1. These parameters are nor 100% iested, but are svaluated at initial characiariz三tion and at any time the design is modified where capacitance may de alfected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			-15		-25		Unit
				Min.	Max.	Min.	Max.	
190	Input or Feedback 10 Combinatorial Output				15		25	ns
ts	Setup Time from Input or Feedback 10 Clock			12		15		
H	Hold Time			0		0		ns
tco	Clock to Output				10		12	ns
Im	Clock Width	LOW		8		12		ns
iwh		HIGH		8		12		ns
$f_{\text {max }}$	Maximum Frequency (Note 3)	External Feedba	1/(ts+ico)	45.5		37		MHz
		Internal Feedb	(int)	50		40		MHz
		No Feecback	1/(twhtim)	62.5		41.6		MHz
tazx	$\overline{\text { EE }}$ to Output Enable				15		20	ns
tpxz	$\overline{\mathrm{OE}}$ to Output Disable				15		20	ns
tea	Input to Output Enable Using Producl Term Control				15		20	ns
fea	Input 10 Output Oisable Using Product Term Control				15		20	ns

Notes:
2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% ested, but are calculated at initial characterization and at any time the desiç is modified where frequency may be alfected.

3	
$\cdots \quad 1$	
$\cdots 1$ AMO	
ABSOLUTE MAXIMUM RATINGS	
Storage Temperature	$-55^{\circ} \mathrm{C} 10+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	$\cdots-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$
Supply Voltage with Respect to Ground	$-0.5 \vee 10+7.0 \vee$
OC Inpui Voltage	$-0.5 \mathrm{~V} 10 \mathrm{Vcc}-1.0 \mathrm{~V}$
OC Output or $1 / 0$ Pin Voltage	$-0.5 \vee 10 \mathrm{Vcc}+1.0 \mathrm{~V}$
Static Discharge Voltage	2001 V
Latchup Current $\left(T c=-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}\right)$	100 mA

OPERATING RANGES
Military (M) Devices (Note 1)
Operating Casa
Temperalure (Tc)
Supply Voltage (VCc)
wilh Respeci 10 Ground
$-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$

$$
+4.5 \mathrm{~V} 10 \div 5.5 \mathrm{~V}
$$

operating ranças deina thosa limits between whicin ina func. tionality of tha device is guaranteed.

Note:

1. Military products are tested at $T C=+25^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$, per M1L-STO-dz3.

Strassas above thosa listed under Absoluta Marimum Rat. ings may causa permanent device lailure. Functionality at or above these limits is not implied. Exposure to Absolute Marimum Ratings for extanded periods may affect device caliability. Programming conditions may differ. Absoluta Maximum Ratings ara for systam design referenca; parameters given are not tasted.

DC CHARACTERISTICS over MILITAFY operating ranges unless otherwise specified (Note 2)

PRELIMINARY					
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
VOH	Output HIGH Voltage	$\begin{aligned} & I_{C H}=-2.0 \mathrm{~mA} \\ & V_{C C}=\text { Min. } \end{aligned}$	2.4		V
Vol	Output LOW Voltage	$\begin{aligned} & I_{C L}=12 \mathrm{~mA} \\ & V_{C C}=\mathrm{Min} . \end{aligned}$		0.5	V
$V_{\text {IH }}$	Input HIGH Voltage	Guaranteed Input Logical HIGH: Voltage for all Inputs (Note 3)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		0.8	V
1 H	Input HIGH Leakage Current	$V_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=$ Max. (Note 4)		10	μA
IIL	Input LOW Leakage Current	$V: M=0 \mathrm{~V}, \mathrm{Vcc}=$ Max. (Note 4)		-100	山A
1azh	Off-State Output Leakage Current HiG'H	$\begin{aligned} & V_{\text {CuT }}=5.5 \mathrm{~V}, V_{C C}=\text { Max } . \\ & V_{\text {IN }}=V_{\text {IH }} \text { or } V_{\text {IL }}(\text { Note } 4) \end{aligned}$		10	U
loze	Oft-Siate Output Leakage Current LOW			-100	μ
Isc	Output Snort-Circuit Current	$\begin{aligned} & V C c=5.0 \mathrm{~V}, \text { Vout }=0.5 \mathrm{~V} \text { (Ncte } 5), \\ & T=25^{\circ} \mathrm{C} \end{aligned}$	-30	-150	mA
lcc	Sucply Current (Oynamic)	Outputs Open (lout = 0 mA) Vce = Max., t $=25 \mathrm{MHz}$		130	π

Notes:
2. For APL products. Group A, Suç̧oups 1,2 and 3 are tested per MIL-STD-83J. Method soos, unless ctherwisa noted.
3. $V_{I L}$ and $V_{1 H}$ are input conditions of output tests and are not themselves directly tested. $V_{I L}$ and $V_{I H}$ are absolure veltages with respect io devica ground and inctude all overshocts due io system andor lestar ncisa. Do not attempt io test inesa yalues without suitable equipment
4. 1/O pin leakage is ine worst case of lit and lozt (or lim and lozt).
5. Nat more than one ourput should be shc̈red at a time and duration of the short circuit simould not axceed one second. VOUT $=0.5 V$ has been chosen to avold rest problems caused by resier ground dec:adation. This parameter is not 100% tested, but is evaluatad at initial characterization and as any time the design is mociifiec wnere lsc may be affec:ed.

Note:
 where caoacitance may be allected.

SWITCHING CHARACTERISTICS over MILITARY operating ranges (Note 2)

PRELIMINARY						
Parameter Symbol	Parameter Description			Min.	Max.	Unit
tpo	Ireut or Feedback to Comoinalcrial Culpul				10	ns
is	Serup Time from Input or Fescback 10 Clock			10		ns
1 H	Hold Time			0		ns
ico	Clock to Output				7	ns
twe	Clock Width	LOW		8		ns
trant		HIGH		8		ns
fmax	Maximum Er=quency (Note 3)	External Feec	$1 /(t s+i c o l)$	58.5		MHz
		Intemal Feed		82.5		MHz
		No Feedback	$1 /($ wh + (wh)	82.5		MHz
tpzx	$\overline{O E}$ io Output Enable (Note 3)				10	ns
texz	$\overline{\text { OE to Output Oisable (Note 3) }}$				10	ns
tea	Ircut to Output Enable Using Product Term Control (Note 3)				10	ns
tea	Ir.cut to Outpur Disable Using Product Term Control (Note 3)				10	ns

Notes:
2. See Switching Test Circuit for isst conditions. For Apl Produc.s, Group A, Suecgrcups 9. 10, and 11 are tested per Mill-STO-882. Method 5005. unless ofinerwise noted.
3. Thesa parameters are not 100% tested, but are evaluated at initial characerrizaticn and at any time the design is modified where thesa parameters may $b e$ affec:ed.

\because	21－ic	
	AESOLUTE MAXIMUM RATINGS	
$:$	Storage Temperaiure	$-55^{2} \mathrm{C} 10-\mathrm{i} 0^{2} \mathrm{C}$
	Ambient Temperalure with Power Applied	$\cdots-53^{\circ} \mathrm{C} 10-125: \mathrm{C}$
	Supply Voltage with Respect to Ground	$-0.5 \mathrm{~V} 10+7.0 \mathrm{~V}$
	DC Inour Voltage	$-0.5 \mathrm{~V} 10 \mathrm{VCE}+1.0 \mathrm{~V}$
	OC Ourput or $1 / 0$ Pin Voltage	$-0.5 \mathrm{~V} 10 \mathrm{VCC}+1.0 \mathrm{~V}$
	Static Discharga Voltage	2001 V
	Laichup Current $\left(T C=-55^{\circ} \mathrm{C}\left(0+125^{\circ} \mathrm{C}\right)\right.$	100 m

OfERATHIG RANGES	
Military（ill Devices（rote 1）	
Coeratiocase	
Temocteturs（Tc）	$-55^{2} \mathrm{C}: 0+125^{\circ} \mathrm{C}$
Supply＇iciaces（Vcc） wiln Res．ここci io Ground	$+4.5 \mathrm{~V} / 10+5.5 \mathrm{~V}$

Operating rarses datine those limits berveen whicin the func lionelity of tris Eevica is quarantesd．

Note：
1．Miikery $=:=c t c: s$ ars iesiad at $T C=-25^{\circ} \mathrm{C},-i 25^{\circ} \mathrm{C}$ and－ $5^{\circ} \mathrm{C}$ ．ger MLL－STD－883

Stresses above those listed under fosolute Maximum Rat． ings may causa permanant device failure．Functionaliy at or above these limits is not implied．Exposure io Aosoluta Maxi mum Ratings for axtended periods may affec：device reliáoil ity．Programming conditions may differ．Absolute Maximum Qatings are for system design reierence；parameters given are not lestad

DC CHARACTERISTICS over MILITARY operating ranges unless otherwise specified （Note 2）

Parameter Symbol	Parameter Description	Test Conditions	Min．	Max．	Unit
VOH	Output HIGH Voltage	$\begin{aligned} & I_{O M}=-2.0 \mathrm{~mA} \quad V_{N}=V_{1} \text { Or } V_{I L} \\ & V_{C C}=M \text { In. } \end{aligned}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} l_{a}=12 \mathrm{~mA} & V_{\mathrm{IN}}=1 / \mathrm{H} \text { or } V_{\mathrm{IL}} \\ V_{C C}=M i n . & \end{array}$		0.5	V
$V_{1 H}$	Input HIGH Voltage	Guaranteed Input Logica！HIGH Voltage ior all inputs（incte 3）	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Loçica！LOW Vollage ior all inputs（ivale 3）		0.8	V
114	Input HIGH Leakage Current	$V_{1 N}=5.5 \mathrm{~V}, V_{C E}=$ MẼ，（Note 4）		10	1.
116	Input LOW Leakage Current	$V_{\text {IN }}=0 \mathrm{~V} . \mathrm{VCC}=\mathrm{Mex} .($ Vcre 4$\}$		－10	μA
102\％	Off－State Outpur Leakage Current HIGH	$\begin{aligned} & V_{\text {OUT }}=5.5 \mathrm{~V}, V_{C L}=N!玉 i \\ & V_{\text {IN }}=V_{\text {IH OR }} V_{\text {IL }} \text { (Nole }+i \end{aligned}$		10	$\xrightarrow{\square}$
1026	Off－Siate Output Leakage Current LOW	$V_{C U T}=0 V . V_{C S}=$ MẼ． $V_{\text {IN }}=V_{\text {i }}$ or $V_{\text {IL }}$（Nole $-i$		－100	$\square \mathrm{H}$
Isc	Qutput Snor－Circuit Current	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \text { VCuT }=0.5 V(\text { Note } 3) . \\ & T=25^{\circ} \mathrm{C} \end{aligned}$	－30	－150	π m
lce	Supply Current（Dynamic）	Outputs Open（lcur $=0 \mathrm{~mA}$ ） 		130	πA

Motes：
2．For APL products，Group A，Subgrougs 1,2 and 3 are lested aer MIL－STD－EE3，Netrod Socs．unless cmenwisa ncted．
 respect 10 devica ground and inciude all overshoots due io system andlorias：ar noise．Oo nct attempt to cest thasa values without suitable equipment

4．WO pin leakaçe is the worsi case of lill and loz（or lit and lozt）．
5．Nat more than one autput should be shored at a cime and duration of ine si：cr．－circuil should not excaed one sacand． Vout $=0.5 \mathrm{~V}$ has been chosen to avcic rest prodems causec by tester grocne degradation．This parameter is nct 100% lesied，bur is evaluared at intial characterizanon and at ary time the cesign is moctified where Isc may ae aifec：ed．

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Descriptions	Test Conditions		Typ.	Unit
Cin	Input Capacitance	$\mathrm{V}_{14}=2.0 \mathrm{~V}$	$\begin{aligned} & \mathrm{VCe}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}=1 \mathrm{MHz} \end{aligned}$	8	pF
Cour	Output Capacitance	VOut $=2.0 \mathrm{~V}$		8	gF

Note:

1. Thesa parameters are nct 100% tested, but ara avaluated at initial charactarization and at any time the desiçn is mocritied whers capacriance may be affected.

SWITCHING CHARACTERISTICS over MILITARY operating ranges (Note 2)

Parameter Symbol	Parameter Description			Min.	Max.	Unit
tpo	Incut or Faedback 10 Combinatorial Output				15	ns
ts	Setup Time from Input or Feedback to Clock			12		ns
th	Hold Time			0		ns
tco	Clock to Output				12	ns
tim	Clock Width	LOW		10		ns
twh		HIGH		10		ns
fmax	Maximum Frequency (Note 3)	External Feedb	$1 /(t s+i c o)$	41.0		MHz
		Intemal Feedb		45.5		MHz
		No Feedoack	1/(twn+tim)	50		MHz
tezx	$\overline{\text { OE }} 10$ Output Enable (Note 3)				15	ns
tpxz	$\overline{O E}$ to Output Disable (Note 3)				15	ns
tea	Input to Output Enable Using Product Term Control (Note 3)				15	ns
ter	Input to Output Disable Using Product Term Control (Note 3)				15	ns

Notes

2. Sea Switching Test Circuit for test conditions. Far APL Products. Group A, Sucgroups 9, 10, and 11 are tested per MIL-STD-863. Methed 5005. unless otherwise noted.
3. These parameters are not 100% tested, but are eyaluated at initial characterization and at any time the design is modified where these parameters may be affected.

7 amo

IBSOLUTE MAXIMUM RATINGS
itorage Temperature
imbient Temperature
, ith Power Applied
jupply Voltage with
Zespect to Ground
JC Imput Voltage
JC Output or $1 / O$ Pin Voltage
Static Discharge Voltage
Latchuo Current
$\left(T C=-55^{\circ} \mathrm{C}: 10+125^{\circ} \mathrm{C}\right)$
Strasses above those listad under Absolute Maximum Rat. ings may cause permanent device failure. Functionality at or above these limits is not implied. Exposura to Absoluta Maximum Ratings for axtanded periods may affect devica reliability. Programming conditions may differ. Absolute Maximum Ratings are lor systam dasign reference: parameters given are not tested.

OPERATING RANGES
Military (M)-Devices (Note 1)
Operating Case
Temperature (Tc) $\quad-55^{\circ} \mathrm{C}: 10+125^{\circ} \mathrm{C}$
Supply Voltage (1/cc)
with Respect 10 Ground

$$
+4.5 \vee 10 \div 5.5 \mathrm{~V}
$$

Operating rances defina thosalimits cetween which the funccionality of che cavica is suaraneag.

Note:

1. Military products are iested at $\mathrm{TC}=+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$. per MIL-STO-983.

DC CHARACTERISTICS over MILITARY operating ranges unless otherwise specified (Note 2)

Parameter Symbol	Parameter Descriptlon	Test Conditions	Min.	Max.	Unit
VOH	Output HIGH Voltage	$\begin{aligned} & I_{C H}=-2.0 \mathrm{~mA} \quad V_{I N}=V_{I H} \text { or } V_{I L} \\ & V_{C C}=M i n . \end{aligned}$	2.4		V
Vol	Output LOW Vollage	$\begin{array}{lll} 10 L=12 \mathrm{~mA} & V_{I N}=V_{I H} \text { or } V_{M} \\ V_{C C}=M \text { in. } & \end{array}$		0.5	v
$V_{\text {IH }}$	Input HIGH Voltage	Guaranteed Input Logical HIGHi Voltaçe tor all inputs (Note 3)	2.0		v
$V_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltege for all Inputs (Note 3)		0.8	v
1 H	Input HIGH Leakage Current	$V_{\text {in }}=5.5 \mathrm{~V}, \mathrm{~V}_{C C}=$ Max. $($ Note 4)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current			-10	$\mu \mathrm{A}$
102 H	Off-State Output Leakage Current HIGH	$\begin{aligned} & V_{\text {OUT }}=5.5 V^{2} V_{C C}=\text { Max. } \\ & V_{\text {IN }}=V_{I H} \text { or } V_{\text {II }} \text { (Note 4) } \end{aligned}$		- 10	μA
1022	Otf-Siate Output Leakage Current Low	$\begin{aligned} & V_{\text {CUT }}=O V_{1} V_{C C}=M_{C L} . \\ & V_{\text {IN }}=V_{\text {IH OI }} V_{\text {IC }} \text { (Note } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Shor-Circuit Current	$\begin{aligned} & \text { VCC }=5.0 \mathrm{~V} . \text { VCuT }=0.5 \mathrm{~V}(\text { NCIE } 5), \\ & T=25^{\circ} \mathrm{C} \end{aligned}$	-30	-150	mA
Icc	Supply Current (Dymarric)	Outpuis Open (lout = 0 mA) $V_{c c}=M a x . .1=25 \mathrm{MHz}$		130	$m A$

Notes:
2. For APL produces, Group A. Suagroups 1,2 and 3 are tested ger MIL-STD-833. Merhcd 5005, unless otherwisa noted.
3. $V_{I L}$ and $V_{I H}$ are input conditions of output tests and are not inemselves directly tested. $V_{l l}$ and $V_{1 H}$ are absolute voltages with respect lo device ground and include all oversincots due :o system andlor tester noisa. Oo not attempt to test ihese values without suitable equioment.
4. UO pin leakage is the worst case of lil and lozt (or lith and loz-1).
5. Not mare than one output should be shered at a time and duration of the short-circuit should not excegd ane sacond. Vout $=0.5$ V has been chosen to avcid'lest problems caused by lester ground desracation. This parameter is not 100% rested, but is evaluated at initial charac:erization and at any time the design is mocilied where lsc may be alfected.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Descriptions	Test Conditions		Typ.	Unit
Cin	Input Capacitance	$V_{1 N}=2.0 \mathrm{~V}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \\ & f=1 \mathrm{MHz} \end{aligned}$	8	pF
Cour	Cutput Capactance	$\mathrm{Vair}=2.0 \mathrm{~V}$		8	OF

Note:

1. These parameters ase not 100% lested, but are evaluated at intial charactarization and at any time the dasign is modified where capacitarica may be affocied.

SWITCHING CHARACTERISTICS over MILITARY operating ranges (Note 2)

Parameter Symbol	Parameter Description			-20		-25		Unit
				Min.	Max.	Min.	Max.	
too	Incut or Feedback to Combinatorial Output				20		25	ns
ts	Setup Time from Inout or Feedback to Clock			15		15		
$\mathrm{tH}^{\text {H}}$	Hold Time			0		0		ns
tco	Clock to Output				15		20	ns
tm	Ciock With	LOW		12		15		ns
tur		HIGH		12		15		ns
fmax	Maximum Frequency (Note 3)	Eremal Feedb	$1 /(t s+i c o)$	33.3		28.5		MHz
		Internal Feedb	(art)	35.7		30.3		MHz
		No Feedback	1/(twretim)	41.7		33.3		MHz
tozx	$\overline{\text { OE }}$ to Output Enable (Note 3)				20		20	ns
texz	$\overline{\mathrm{OE}}$ to Output Disable (Note 3)				20		20	ns
tea	Input to Output Enable Using Product Term Control (Note 3)				20		25	ns
ter	Incut to Output Disable Using Product Term Control (Note 3)				20		55	ns

Notes:

2. See Switching Test Circuit for test canditions. For APL Produc:s, Group A, Suegrcups 9, 10, and 11 are testad per MIL-STD-883, Mathod 5005 , unless atherwisa nctad.
3. These parameters are not 100% resiod, but are evaluated at initial charac:erization and at any time the dasign is modified where these parametars may be affecied.
SWITCHING WAVEFORMS

Clock

Clock Width

12015-013A
Input to Output Disable/Enable

OE to Output Disable/Enable

Notes:

1. $V T=1.5 V$
2. Input gulsa amplisuce 0 y to 3.0 V .
3. Inoul rise and iall umes $2-5$ ns iypical.
2.70

PALCE16V8 Family

KEY TO SWITCHING WAVEFORMS

WAVEFORM	InPuts	OUTPUTS
	tulus be Sieady	Wiil be
		Steacty
$4 \square$	May Cinange fromitol	will b Charc:reg trom: $\mathrm{F}: \mathrm{L}$
	May Chance fram Lio H	Will be Charc:re Proml:a H
	Don: Care, Any Change Permited	Chançng. Stats Unknown
$\square \rightarrow$	Does Nol Apply	Center Line is righ. Impecance "Off" Sizis

SWITCHING TEST CIRCUIT

Specification	St	C	Commercial		Military		Measured Output Value
			8.	82	8.	g_{2}	
tro. teo	Closed	50 p	200Ω	390 S2	$3 \subseteq C \Omega$	750Ω	1.5 V
lpZx, EEA	$\begin{aligned} & Z \rightarrow H: \text { Open } \\ & Z \rightarrow L: \text { Closed } \\ & \hline \end{aligned}$						1.5 V
texz. \®я	$H \rightarrow Z$: Open $L \rightarrow Z$: Closed	5 pF					$\begin{aligned} & H \rightarrow Z: \mathrm{VOH}-0.5 \mathrm{~V} \\ & \mathrm{~L} \rightarrow \mathrm{Z}: \mathrm{Val}+0 . \mathrm{SV} \end{aligned}$

aino
DURANCE CHARACTERISTICS
PALCE16V8 is menulactured using AMO's adced Electrically Erasable process. This technology s an $E E$ cell to replace the fuse link used in bipolar
parts. As a result, tre device can be erased and reprogrammed - a leature which allows 100% lesting at the lactory.
durance Characteristics

Mbol	Parameter	\ddots Min.	Units	Test Conditions
Op	Min. Pattern Oata Fetention Time	10	Years	Max. Storage Temperature
		20	Years	Max. Operating Temperature (Military)
	Min. Reprogramming Cycles	100	Cycles	Normal Programming Conditions

PUTIOUTPUT EQUIVALENT SCHEMATICS

Typical Input

Typical Output

ROBUSTNESS FEATURES FOR $/ 5$ VERSIONS
The PALCE $16 \vee 8 \mathrm{H}-7 / 5$ has some unique features that make it extremely robust, especjally when operaling in high-speed design environments. Pull-up resistors on inputs and $1 / O$ pins cause unconnected pins to default to a known state. Input clamping circuitry limits negative
overshoot, eliminating the possibility of false clocking caused by subsequent ringing. A special noise filter makes the programming circuitry completely insensitive to any positive overshool that has a pulse with of less than about 100 ns.

INPUT/OUTPUT EQUIVALENT SCHEMATICS FOR/5 VERSION

Typical Input

Typleal Output

15407ג-C018

I'A:no
JWER-UP RESET
:e PALCE16V8 has eeen designed with the capability resel during system power-up. Following power-up. flip-llops will be reset to LOW. The output state will be G'H independent of tine logic polarity. This leature protes extra flexibility to the designer and is especially :luable in simplifying state machine initialization. A ning diagram and parameler table are shown below. ise to the synchronous operation of the power-up reset
and the wide range of ways Vcc can rise to its steec state, two conditions are required to insure a valid power-up resel. Tinese concitions are:

1. The Vce rise must cemonotonic.
2. Following reset, the clock ingut must not be driven from LOW to hilGiH unit all applicable input and ieed back selup times arミ met.

دarameter Symbol	Parameter Descriptions	Min.	Max.	Unit
tof	Power-Up Reset Time.		1000	ns
ts	Input or Feecback Setup Time	See Switching Characteristics		
tw	Clock Width LOW			

Fower-Up Reset Wavetorm

