53/63RA481 53/63RA481A

Features/Benefits

- Versatile synchronous and asynchronous enables
- Asynchronous preset and clear
- Edge-triggered "D" registers
- 8-bit-wide in 24-pin SKINNYDIP ${ }^{\circledR}$ for high board density
- On-chip register simplifies system timing
- Faster cycle times
- $16 \mathrm{~mA} \mathrm{IOL}_{\mathrm{OL}}$ output drive capability
- Reliable titanium-tungsten fuses (Ti-W), with programming yields typically greater than $\mathbf{9 8 \%}$.

Applications

- Microprogram control store
- State sequencers/state machines
- Next address generation
- Mapping PROM

Description

The 53/63RA481 and 53/63RA481A are 512×8 Registered PROMs with on-chip " D " type registers, versatile output enable control through synchronous and asynchronous three-state enable inputs, and asynchronous preset and clear.

Pin Configuration

Ordering Information

MEMORY		PACKAGE		DEVICE TYPE	
SIZE	PERF.	PINS	TYPE	MIL	COM
4 K	Standard	24	NS,	53RA481	63RA481
	Enhanced		JS (L)	53RA481A	63RA481A

Flatpak - Contact the factory.
Data is transferred into the output registers on the rising edge of the clock. The data will appear at the outputs provided that both the asynchronous \bar{E} and synchronous ESenables are Low. Prior to the positive clock edge, register data are not affected by changes in addressing or synchronous enable inputs.
Memory expansion and data control is made more flexible with synchronous and asynchronous enable inputs. Outputs may be set to the high-impedance state at any time by setting $\overline{\mathrm{E}}$ to a High or if $\overline{E S}$ is High when the rising clock edge occurs. When $V_{C C}$ power is first applied, the synchronous enable flip-flop will be in the set condition causing the outputs to be in the highimpedance state.
The output registers will be set to all Highs when preset is Low independent of the state of clock. The output registers will be reset to alt Lows when clear is Low independent of the state of clock. Note that preset and clear are exclusive operations and cannot occur simultaneously.

Block Diagram

Absolute Maximum Ratings

Off-state output voltage . 0.5 C V to 5.5 V
.12 V
Storage temperature
-65° to $+150^{\circ} \mathrm{C}$

Operating Conditions

SYMBOL	PARAMETER	TYP \dagger	COMMERCIAL				MILITARY				UNIT
			63RA481A		63RA481		53RA481A		53RA481		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	5.0	4.75	5.25	4.75	5.25	4.5	5.5	4.5	5.5	V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	25	0	75	0	75	-55	125	-55	125	${ }^{\circ} \mathrm{C}$
t_{w}	Width of clock (High or Low)	10	20		20		20		20		ns
$t_{\text {prw }}$	Width of preset or clear	10	20		20		20		20		ns
${ }_{\text {t }}^{\text {clrw }}$	(Low) to Output (High or Low)	10	20		20				2		ns
$\mathrm{t}_{\mathrm{prr}}$	Recovery from preset or clear	11	20		20		25		25		ns
$\mathrm{t}_{\mathrm{c} / \mathrm{Irr}}$	(Low) to clock High										
t_{S} (A)	Setup time from address to clock	22	30		35		35		45		ns
$\mathrm{t}_{\mathrm{S}}(\overline{\mathrm{ES}})$	Setup time from $\overline{\mathrm{ES}}$ to clock	7	10		10		15		15		ns
$t_{h}(A)$	Hold time from address to clock	-5	0		0		0		0		ns
$t_{h}(\overline{E S})$	Hold time from $\overline{\mathrm{ES}}$ to clock	-3	5		5		5		5		ns

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP \dagger	MAX	UNIT
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8	V
V_{IH}	High-level input voltage			2.0			V
$\mathrm{V}_{\text {IC }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
IIL	Low-level input current	$V_{C C}=M A X$	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.25	mA
${ }^{1} \mathrm{H}$	High-level input current	$V_{C C}=M A X$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$			40	$\mu \mathrm{A}$
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.5	V
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$\begin{aligned} \mathrm{MIL} \mathrm{IOH}^{\prime} & =-2 \mathrm{~mA} \\ \mathrm{COM} & \mathrm{OH}^{\prime} \end{aligned}$	2.4			V
$\begin{aligned} & \mathrm{I}_{\mathrm{OZL}} \\ & \mathrm{I}_{\mathrm{OZH}} \end{aligned}$	Off-state output current	$\mathrm{V}_{C C}=\mathrm{MAX}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
${ }^{\text {IOS }}$	Output short-circuit current*	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-20		-90	mA
${ }^{\text {I CC }}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	All outputs open.		130	180	mA

[^0]
Switching Characteristics Over Operating Conditions and using Standard Test Load

SYMBOL	PARAMETER	TYP \dagger	COMMERCIAL				MILITARY				UNIT
			63RA481A		63RA481		53RA481A		53RA481		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {t }}$ CLK	Clock to output Delay	11		15		20		20		25	ns
$\mathrm{t}_{\text {ESA }}$	Clock to output access time ($\overline{\mathrm{ES}}$)	14		25		30		30		35	ns
${ }^{\text {t }}$ ESR	Clock to output recovery time ($\overline{\mathrm{ES}}$)	14		25		30		30		35	ns
${ }^{\text {t EA }}$	Enable to output access time (\bar{E})	10		20		30		25		35	ns
${ }^{\text {t }}$ ER	Disable to output recovery time ($\overline{\mathrm{E}}$)	10		20		30		25		35	ns
${ }^{\text {t }}$ PR	Preset to output delay ($\overline{\mathrm{PR}}$)	15		20		25		25		30	ns
${ }^{\text {t CLR }}$	Clear to output delay ($\overline{\mathrm{CLR}}$)	18		25		30		35		40	ns

\dagger Typical at $5.0 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and $25^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{A}}$

Function Table

\bar{E}	$\overline{\text { ES }}$	CLK	$\overline{\mathbf{P R}}$	$\overline{\text { CLR }}$	A8-A0	Q7-Q0	Operation
H	X	X	X	X	X	Z	High-Impedance
X	H	\dagger	X	X	X	Z	High-Impedance
L	L	X	L	H	X	H	Preset
L	L	X	H	L	X	L	Clear
L	L	X	L	L	X		egal Operation
L	L	\dagger	H	H	A	Data	Memory Access

Definition of Waveforms

NOTES: 1. Input pulse amplitude 0 V to 3.0 V .
2. Input rise and fall times $2-5 \mathrm{~ns}$ from 1.0 V to 2.0 V .
3. Input access measured at the 1.5 V level.
4. Switch S_{1} is closed. $C_{L}=30 \mathrm{pF}$ and outputs measured at 1.5 V level for all tests except $t_{\text {ESA }}$ and $t_{\text {ESR }}$.
5. $t_{E A}$ and $t_{E S A}$ are measured at the 1.5 V output level with $C_{L}=30 \mathrm{pF} . \mathrm{S}_{1}$ is open for high-impedance to " 1 " test and closed for high impedance to " 0 " test.
${ }^{\mathrm{t}} \mathrm{ER}$ and $\mathrm{t}_{\text {ESR }}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. S_{1} is open for " 1 " to high-impedance test, measured at $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ output level; S_{1} is closed for " 0 " to highimpedance test measured at $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output level.

Switching Test Load

Schematic of Inputs and Outputs

Programming

The 53/63RA481 and 53/63RA481A are programmed with the same programming algorithm as all other Monolithic Memories' registered PROMs. For details refer to Monolithic Memories' LSI Data Book.
Monolithic Memories' PROMs are designed and tested to give a programming yield greater than 98%. If your programming yield is lower, check your programmer. It may not be properly calibrated.

Definition of Timing Diagram

Metal Mask Layout

Package Drawings

J24S Ceramic SKINNYDIP

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS

N24S Molded SKINNYDIP

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS

L28 Leadless Chip Carrier

TOP VIEW

NOTES:

1. Top Dimension Specified in Inches. Bottom Dimension Specified in mm
2. All Nominal Dimensions Are $\pm .007$ inches Unless Otherwise Specified.
3. Solder Fillets on Lid Edges Not Shown.

Monolithic Memories

Americas
Monolithic Memories
2175 Mission College Blvd. Santa Clara, CA 95050 Phone (408) 970-9700 Telex (910) 338-2374 Telex (910) 338-2376 Fax (408) 988-4254

France
Monolithic Memories France S.A.R.L.
Silic 463
F 94613 Rungis Cedex
France
Phone 1-6874500
Telex 202146
Fax 1-6876825

Japan
Monolithlc Memorles Japan KK
5-17-9 Shinjuku
Shinjuku
Tokyo 160
Japan Phone 3-207-3131
Telex 232-3390 MMIKKJ
Fax 3-207-3139
United Kingdom
Monollthic Memories, Ltd.
Monolithic House
1 Queens Road
Farnborough, Hants
England GU146DJ
Phone 9-011-44-252-517431
Telex 858051 MONO UKG
Fax (0252) 43724

Germany
Monollthic Memorles, GmbH
Mauerkircherstr 4
D 8000 Munich 80
West Germany
Phone 89-984961
Telex 524385
Fax 89-983162

[^0]: * Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
 \dagger Typical at $5.0 \vee V_{\mathrm{CC}}$ and $25^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{A}}$.

