			157 S157 LTIPLEXER		CONNECTION DIAGRAM PINOUT A
DESCRIP of data fr able inpu (non-inve different ORDERIN	ION m two . The ed) for unction	The '157 is a high speed quad sources can be selected us our buffered outputs prese m. The ' 157 can also be used to two variables. E: See Section 9	ad 2 -input multiplexer. Fo ing the common Select and ent the selected data in th ed to generate any four of	bits En- true 16	LOGIC SYMBOL
	PIN	COMMERCIAL GRADE	MILITARY GRADE		
PKGS		$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	TYPE	
Plastic DIP (P)	A	$\begin{aligned} & \text { 74157PC, 74S157PC } \\ & \text { 74LS157PC } \end{aligned}$		9B	
Ceramic DIP (D)	A	$\begin{aligned} & \text { 74157DC, 74S157DC } \\ & \text { 74LS157DC } \end{aligned}$	54157DM, 54S157DM \|54LS157DM	6B	$\begin{aligned} & V_{C C}=\operatorname{Pin} 16 \\ & \text { GND }=\operatorname{Pin} 8 \end{aligned}$
Flatpak (F)	A	$\begin{aligned} & \text { 74157FC, 74S157FC } \\ & \text { 74LS157FC } \end{aligned}$	54157FM, 54S157FM 54LS157FM	4L	

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	$54 / 74$ (U.L.) HIGH/LOW	54/74S (U.L.) HIGH/LOW	$54 / 74$ LS (U.L.) HIGH/LOW
$\mathrm{I}_{\mathrm{a}}-\mathrm{l}_{0 \mathrm{~d}}$	Source 0 Data Inputs	$1.0 / 1.0$	$1.25 / 1.25$	$0.5 / 0.25$
$\mathrm{I}_{1}-\mathrm{I}_{\mathrm{d}}$	Source 1 Data Inputs	$1.0 / 1.0$	$1.25 / 1.25$	$0.5 / 0.25$
E	Enable Input (Active LOW)	$1.0 / 1.0$	2.52 .5	$1.0 / 0.5$
S	Select Input	$1.0 / 1.0$	$2.5 / 2.5$	$1.0 / 0.5$
$\mathrm{Z}_{\mathrm{a}}-\mathrm{Z}_{\mathrm{d}}$	Outputs	$20 / 10$	$25 / 12.5$	$10 / 5.0$
				(2.5)

FUNCTIONAL DESCRIPTION - The '157 is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input (\bar{E}) is active LOW. When $\overline{\mathrm{E}}$ is HIGH , all of the outputs (Z) are forced LOW regardless of all other inputs. The' 157 is the logic implementation of a 4 -pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$
\begin{array}{ll}
Z_{\mathrm{a}}=\bar{E} \bullet\left(l_{1 \mathrm{a}} \bullet S+l_{\mathrm{a}} \bullet \overline{\mathrm{~S}}\right) & Z_{\mathrm{b}}=\overline{\mathrm{E}} \bullet\left(l_{1 \mathrm{~b}} \bullet \mathrm{~S}+\mathrm{lob}_{0} \bullet \overline{\mathrm{~S}}\right) \\
Z_{\mathrm{c}}=\overline{\mathrm{E}} \bullet\left(l_{1 \mathrm{c}} \bullet \mathrm{~S}+\mathrm{l}_{\mathrm{c}} \bullet \overline{\mathrm{~S}}\right) & Z_{\mathrm{d}}=\overline{\mathrm{E}} \bullet\left(l_{1 \mathrm{~d}} \bullet \mathrm{~S}+\mathrm{l}_{\mathrm{od}} \bullet \overline{\mathrm{~S}}\right)
\end{array}
$$

A common use of the ' 157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The '157 can generate any four of the 16 different functions of two variables with one variable common. This is useful for implementing highly irregular logic.

LOGIC DIAGRAMS
'157

'S157 •'LS157

TRUTH TABLE

INPUTS				OUTPUT
$\bar{E} \bar{E}$	S I_{0}	I_{1}	Z	
H	X	X	X	L
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		54/74		54/74S		54/74LS		UNITS	CONDITIONS
			Min	Max	Min	Max	Min	Max		
los	Output Short Circuit Current	XM	-20	-55	-40	-100	-20	-100	mA	V cc $=\mathrm{Max}$
		XC	-18	-55	-40	-100	-20	-100		
Icc	Power Supply Current			48		78		16	mA	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max} \\ & \text { All Inputs }=4.5 \mathrm{~V} \end{aligned}$

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	54/74	54/74S	54/74LS	UNITS	CONDITIONS
		$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$	$C_{L}=15 \mathrm{pF}$		
		Min Max	Min Max	Min Max		
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay S to Z_{n}	$\begin{aligned} & 23 \\ & 27 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 26 \\ & 24 \end{aligned}$	ns	Figs. 3-1, 3-20
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{E}}$ to Z_{n}	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{array}{r} 12.5 \\ 12 \end{array}$	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	ns	Figs. 3-1, 3-4
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay In to Z_{n}	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	ns	Figs. 3-1, 3-5

