General Description

This device contains four independent set-reset type flipflops with one Q output each.

Connection Diagram

TL/F/9785-1
Order Number 54279DMQB, 54279FMQB or DM74279N NS Package Number J16A, N16E or W16A

Pin Names	Description
R_{n}	Reset Inputs (Active Low)
S_{n}	Set Inputs (Active Low)
Q	Outputs

Truth Table

| $\begin{array}{c}\text { Inputs } \\ \overline{\mathbf{S}} \mathbf{1}\end{array}$ | | | $\overline{\mathbf{R}}$ |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Output

Q\end{array}\right]\)| L | L | L | H |
| :---: | :---: | :---: | :---: |
| L | X | H | H |
| X | L | H | L |
| H | H | L | No Change |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$\mathrm{h}=$ The output is HIGH as long as $\overline{\mathbf{S}} 1$ or $\overline{\mathrm{S}} 2$ is LOW. If all inputs go HIGH simultaneously, the output state is indeterminate; otherwise, it follows the Truth Table.

Absolute Maximum Ratings (Note)

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		54279			DM74279		
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8			0.8	V
I_{OH}	High Level Output Current			-0.8			-0.8	mA
I_{OL}	Low Level Output Current			16			16	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over Recommended Operating Free Air Temperature Range (Unless Otherwise Noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{I}_{1 \mathrm{H}}$	High Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$V_{C C}=M a x$ (Note 2)	54	-20		-55	mA
			DM74	-18		-57	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{R}}=0 \mathrm{~V}$				30	mA

Switching Characteristics

Symbol	Parameter	54/DM74		Units
		Min	Max	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{S} to Q		$\begin{aligned} & 22 \\ & 15 \\ & \hline \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay \bar{R} to Q		27	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

