

Connection Diagrams (Continued)

Pin Names	Description
CP	Clock Pulse Input
DS_{0}	Serial Data Input for Right Shift
DS_{7}	Serial Data Input for Left Shift
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Mode Select Inputs
$\overline{\mathrm{MR}}$	Asynchronous Master Reset
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$	TRI-STATE Output Enable Inputs
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Parallel Data Inputs or
	TRI-STATE Parallel Outputs
$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	Serial Outputs

Functional Description

The 'AC/'ACT299 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by S_{0} and S_{1}, as shown in the Truth Table. All flip-flop outputs are brought out through TRI-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q_{0} and Q_{7} are also brought out on other pins for expansion in serial shifting of longer words
A LOW signal on $\overline{M R}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.
A HIGH signal on either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ disables the TRI-STATE buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The TRI-STATE buffers are also disabled by HIGH signals on both S_{0} and S_{1} in preparation for a parallel load operation.

Truth Table

Inputs				Response
$\overline{\text { MR }}$	S_{1}	S_{0}	CP	
L	X	X	X	Asynchronous Reset; $Q_{0}-Q_{7}=L O W$
H	H	H	\sim	Parallel Load; $1 / \mathrm{O}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$
H	L	H	\sim	Shift Right; $\mathrm{DS}_{0} \rightarrow \mathrm{Q}_{0}$, $Q_{0} \rightarrow Q_{1}$, etc.
H	H	L	\sim	Shift Left, $\mathrm{DS}_{7} \rightarrow \mathrm{Q}_{7}$, $Q_{7} \rightarrow Q_{6}$, etc.
H	L	L	X	Hold

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
$\mathcal{\sim}=$ LOW-to-HIGH Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

| DC Electrical Characteristics |
| :--- | :--- | :--- | :--- | :--- | :--- |
| |

Note 3: All outputs loaded; threshold on input associated with output under test.
Note 4: Maximum test duration 20 ms , one output loaded at a time.
Note 5: I_{N} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit $@ 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.
I_{CC} for $54 \mathrm{AC} @ 25^{\circ} \mathrm{C}$ is identical to $74 \mathrm{AC} @ 25^{\circ} \mathrm{C}$.

DC Electrical Characteristics

For 'ACT Family Devices

Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	54ACT	Units	Conditions
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		
			Guaranteed Limits		
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum High Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	V	$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ \hline \end{array}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \hline \end{aligned}$
V_{OH}	Minimum High Level	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 4.70 \end{aligned}$	v	(Note 7) $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum Low Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{array}{r} 4.5 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 0.50 \\ & 0.50 \\ & \hline \end{aligned}$	V	$\begin{aligned} & \hline \text { (Note } 7) \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \hline \end{aligned}$
$\overline{I_{\text {N }}}$	Maximum Input Leakage Current	5.5	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
$\overline{I_{\text {CCT }}}$	Maximum I ${ }_{\text {cc }} /$ Input	5.5	1.6	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
IOLD	(Note 8) Minimum Dynamic Output Current	5.5	50	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V} \mathrm{Max}$
IOHD		5.5	-50	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
l_{cc}	Maximum Quiescent Supply Current	5.5	80.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$
$\overline{\mathrm{I}} \mathrm{OT}$	Maximum I/O Leakage Current	5.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{1}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{HH}} \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{Cc}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, G N D \end{aligned}$

DC Electrical Characteristics (Continued)
Note 6: I_{CC} limit for $54 \mathrm{ACT} @ 25^{\circ} \mathrm{C}$ is identical to $74 \mathrm{ACT} @ 25^{\circ} \mathrm{C}$.
Note 7: All outputs loaded; thresholds on input associated with output under test.
Note 8: Maximum test duration 2.0 ms , one output loaded at a time.

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	170	pF	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Electrical Characteristics

Symbol	Parameter	V_{cc} (V) (Note 9)			Units	Fig. No.
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
			Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Input Frequency	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 80 \\ & \hline \end{aligned}$		MHz	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $C P$ to Q_{0} or Q_{7} (Shift Left or Right)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 25.5 \\ & 17.5 \end{aligned}$	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $C P$ to Q_{0} or Q_{7} (Shift Left or Right)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 26.5 \\ & 18.0 \end{aligned}$	ns	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{CP}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.5 \\ & 17.0 \end{aligned}$	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{CP}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 26.5 \\ & 18.5 \end{aligned}$	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q_{0} or Q_{7}	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.0 \\ & 18.5 \end{aligned}$	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 26.5 \\ & 18.0 \end{aligned}$	ns	
$\mathrm{t}_{\text {PZH }}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.0 \\ & 15.0 \\ & \hline \end{aligned}$	ns	
$\mathrm{t}_{\text {PZL }}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 23.5 \\ & 16.0 \end{aligned}$	ns	
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 17.0 \end{aligned}$	ns	
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 16.0 \end{aligned}$	ns	

Note 9: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

AC Operating Requirements					
Symbol	Parameter	V_{cc} (V) (Note 10)	54AC	Units	Fig. No.
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Guaranteed Minimum		
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	ns	
$t_{\text {h }}$	Hold Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	ns	
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	ns	
$t_{\text {h }}$	Hold Time, HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	ns	
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW DS_{0} or DS_{7} to CP	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	ns	
$t_{\text {h }}$	Hold Time, HIGH or LOW DS_{0} or DS_{7} to CP	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns	
$\mathrm{t}_{\text {w }}$	CP Pulse Width, LOW	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \\ & \hline \end{aligned}$	ns	
t_{w}	$\overline{\text { MR }}$ Pulse Width, LOW	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	ns	
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	ns	

Note 10: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

AC Electrical Characteristics

Symbol	Parameter	V_{cc} (V) (Note 11)	$\begin{gathered} 54 \mathrm{ACT} \\ \hline \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		Units	Fig. No.
			Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Input Frequency	5.0	70		MHz	
$t_{\text {PLH }}$	Propagation Delay $C P$ to Q_{0} or Q_{7} (Shift Left or Right)	5.0	1.0	15.5	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $C P$ to Q_{0} or Q_{7} (Shift Left or Right)	5.0	1.0	16.0	ns	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay CP to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	1.0	15.0	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay CP to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	1.0	18.0	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{M R}$ to Q_{0} or Q_{7}	5.0	1.0	18.0	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	1.0	17.5	ns	

AC Electrical Characteristics (Continued)

Symbol	Parameter	V_{cc} (V) (Note 11)			Units	Fig. No.
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
			Min	Max		
$\mathrm{t}_{\text {PZH }}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	1.0	14.0	ns	
$\mathrm{t}_{\text {PZL }}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	1.0	14.5	ns	
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	1.0	14.5	ns	
$t_{\text {PLZ }}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	1.0	14.0	ns	

Note 11: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

AC Operating Requirements

Symbol	Parameter	V_{cc} (V) (Note 12)	54ACT	Units	Fig. No.
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \text { Guaranteed } \\ \text { Minimum } \end{gathered}$		
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW S_{0} or S_{1} to CP	5.0	6.5	ns	
t_{n}	Hold Time, HIGH or LOW S_{0} or S_{1} to CP	5.0	1.5	ns	
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	5.0	4.5	ns	
t_{n}	Hold Time, HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	5.0	1.5	ns	
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW DS_{0} or DS_{7} to CP	5.0	5.5	ns	
t_{n}	Hold Time, HIGH or LOW DS_{0} or DS_{7} to CP	5.0	1.5	ns	
$\mathrm{t}_{\text {w }}$	CP Pulse Width HIGH or LOW	5.0	5.0	ns	
t_{w}	$\overline{\mathrm{MR}}$ Pulse Width, LOW	5.0	5.0	ns	
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP	5.0	1.5	ns	

Note 12: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20 Lead Ceramic FLATPAK
NS Package Number W20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-
CONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com	National Semiconductor Europe Fax: +49 (0) 1 80-530 8586 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 180-530 8585 English Tel: $+49(0) 180-5327832$ Français Tel: +49 (0) 1 80-532 9358 Italiano Tel: +49 (0) 180-534 1680	National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com	National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

