54FCT/74FCT574

Octal D Flip-Flop with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'FCT574 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ($\overline{\mathrm{OE}})$. The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.
FACT FCT utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.
FACT FCT features GTOTM output control and undershoot corrector in addition to a split ground bus for superior performance.
The 'FCT574 is functionally identical to the 'FCT374 except for the pinouts.

Features

- NSC 54FCT/74FCT574 is pin and functionally equivalent to IDT 54FCT/74FCT574
- Controlled output edge rates and undershoot for improved noise immunity. Internal split ground for improved noise immunity.
- Input clamp diodes to limit bus reflections.
- TTL/CMOS input and output level compatible.
- $\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}(\mathrm{Com})$ and 32 mA (Mil)
- CMOS power levels
- ESD immunity 24 kV typ
- Military Product compliant to MIL-STD 883

Ordering Code: See Section 8 Logic Symbols

Connection Diagrams

TL/F/10673-3

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$C P$	Clock Pulse Input
$\overline{O E}$	TRI-STATE Output Enable Input
$O_{0}-O_{7}$	TRI-STATE Outputs

Functional Description

The 'FCT574 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}})$ LOW, the contents of the eight flipflops are available at the outputs. When $\overline{O E}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{O E}$ input does not affect the state of the flip-flops.

Function Table

Inputs			Internal	Outputs	Function
$\overline{\mathbf{O E}}$	CP	D	Q	O_{N}	
H	H	L	NC	Z	Hold
H	H	H	NC	Z	Hold
H	\checkmark	L	L	Z	Load
H	Ω	H	H	Z	Load
L	Γ	L	L	L	Data Available
L	Ω	H	H	H	Data Available
L	H	L	NC	NC	No Change in Data
L	H	H	NC	NC	No Change in Data

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{Z}=$ High Impedance
NC $=$ LOW-to-HIGH Transition
No Change

Logic Diagram

TL/F/10673-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Terminal Voltage with Respect to GND (VTERM)
54FCT
74 FCT

Temperature under Bias (T BIAS) 74FCT

54FCT

Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)

74FCT

54FCT
Power Dissipation (P_{T})
DC Output Current (Iout)

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
\\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+135^{\circ} \mathrm{C} \\
\\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0.5 \mathrm{~W}
\end{array}
$$

Note 1: Absolute maximum ratings are those values beyond which damege to the device may occur. Exposure to absolute maximum ratings conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables.

Recommended Operating

 ConditionsSupply Voltage (VCC)

$$
\begin{aligned}
& 54 \mathrm{FCT} \\
& 74 \mathrm{FCT}
\end{aligned}
$$

Input Voltage
Output Voltage
Operating Temperature (T_{A})
54FCT

74FCT
Junction Temperature (T_{J})
CDIP
$175^{\circ} \mathrm{C}$
PDIP
$140^{\circ} \mathrm{C}$

DC Characteristics for 'FCT Family Devices

Typical values are at $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$

Symbol	Parameter	54FCT/74FCT			Units	Conditions	
		Min	Typ	Max			
$V_{I H}$	Minimum High Level Input Voltage	2.0			V		
$V_{\text {IL }}$	Maximum Low Level Input Voltage			0.8	V		
I_{H}	Input High Current			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$	$V_{C C}=\operatorname{Max}$	$\begin{aligned} & V_{1}=V_{C C} \\ & V_{1}=2.7 V \text { (Note 2) } \end{aligned}$
IIL	Input Low Current			$\begin{aligned} & -5.0 \\ & -5.0 \end{aligned}$	$\mu \mathrm{A}$	$V_{c C}=\operatorname{Max}$	$\begin{aligned} & V_{1}=0.5 \mathrm{~V}(\text { Note } 2) \\ & V_{1}=G N D \end{aligned}$
lOz	Maximum TRI-STATE Current			$\begin{gathered} 10.0 \\ 10.0 \\ -10.0 \\ -10.0 \end{gathered}$	$\mu \mathrm{A}$	$V_{C C}=\operatorname{Max}$	$\begin{aligned} & V_{O}=V_{C C} \\ & V_{O}=2.7 \mathrm{~V}(\text { Note } 2) \\ & V_{O}=0.5 \mathrm{~V}(\text { Note } 2) \\ & V_{O}=G N D \end{aligned}$
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage		-0.7	-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ; \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	
los	Short Circuit Current	-60	-120		mA	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}\left(\right.$ Note 1) $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$	
V OH	Minimum High Level Output Voltage		$\begin{gathered} 2.8 \\ V_{H C} \\ 2.4 \\ 2.4 \end{gathered}$	$\begin{gathered} 3.0 \\ V_{C C} \\ 4.3 \\ 4.3 \end{gathered}$	V	$V_{C C}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} ; \mathrm{l}_{\mathrm{OH}}=-32 \mu \mathrm{~A}$	
						$\begin{aligned} & V_{C C}=M i n \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-300 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}(\mathrm{Mil}) \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \text { (Com) } \end{aligned}$
VOL	Maximum Low Level Output Voltage		$\begin{gathered} \text { GND } \\ \text { GND } \\ 0.3 \\ 0.3 \end{gathered}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.5 \\ & 0.5 \end{aligned}$	V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} ; \mathrm{l}_{\mathrm{OL}}=300 \mu \mathrm{~A}$	
						$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=300 \mu \mathrm{~A} \\ & \mathrm{IOL}_{\mathrm{OL}}=32 \mathrm{~mA}(\mathrm{Mil}) \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}(\mathrm{Com}) \end{aligned}$

DC Characteristics for 'FCT Family Devices

Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ (Continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} \& \multirow[t]{2}{*}{Parameter} \& \multicolumn{3}{|c|}{74FCT} \& \multirow[t]{2}{*}{Units} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Conditions}} \\
\hline \& \& Min \& Typ \& Max \& \& \& \\
\hline ICC \& Maximum Quiescent Supply Current \& \& 0.001 \& 1.5 \& mA \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& V_{C C}=\operatorname{Max} \\
\& V_{I N} \geq V_{H C}, V_{I N} \leq 0.2 V \\
\& f_{I}=0
\end{aligned}
\]} \\
\hline \(\Delta l_{\text {CC }}\) \& Quiescent Supply Current; TTL Inputs HIGH \& \& 0.5 \& 2.0 \& mA \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& V_{C C}=M a x \\
\& V_{I N}=3.4 V(\text { Note } 3)
\end{aligned}
\]} \\
\hline ICCD \& Dynamic Power Supply Current (Note 4) \& \& 0.15 \& 0.25 \& \(\mathrm{mA} / \mathrm{MHz}\) \& \begin{tabular}{l}
\[
V_{C C}=\operatorname{Max}
\] \\
Outputs Open
\[
\overline{O E}=G N D
\] \\
One Input Toggling 50\% Duty Cycle
\end{tabular} \& \[
\begin{aligned}
\& V_{\mathbb{N}} \geq V_{H C} \\
\& V_{\mathbb{I N}} \leq 0.2 \mathrm{~V}
\end{aligned}
\] \\
\hline \({ }^{\prime}\) \& Total Power Supply Current (Note 6) \& \& 1.5 \& 4.0

6.0 \& \multirow{2}{*}{mA} \& | $V_{C C}=M a x$ |
| :--- |
| Outputs Open $\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{GND} \\ & \mathrm{f}_{\mathrm{CP}}=10 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{l}}=5.0 \mathrm{MHz} \end{aligned}$ |
| One Bit Toggling 50\% Duty Cycle | \& \[

$$
\begin{aligned}
& V_{I N} \geq V_{H C} \\
& V_{I N} \leq 0.2 \mathrm{~V}
\end{aligned}
$$
\]

$$
\begin{aligned}
& V_{\mathbb{I N}}=3.4 V \\
& V_{I N}=G N D
\end{aligned}
$$

\hline \& \& \& 3.0

5.0 \& 7.8

16.8 \& \& | (Note 5) $V_{C C}=-M a x$ |
| :--- |
| Outputs Open $\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{GND} \\ & \mathrm{f}_{\mathrm{CP}}=10 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{l}}=2.5 \mathrm{MHz} \end{aligned}$ |
| Eight Bits Toggling 50\% Duty Cycle | \& \[

$$
\begin{aligned}
& V_{1 N} \geq V_{\text {HC }} \\
& V_{I N} \leq 0.2 \mathrm{~V}
\end{aligned}
$$
\]

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}
\end{aligned}
$$

\hline
\end{tabular}

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one timo.
Note 2: This parameter guaranteed but not tested.
Note 3: Per TTL driven input $\left(V_{I N}=3.4 \mathrm{~V}\right)$; all other inputs at V_{CC} or GND .
Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
Note 5: Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
Note 6: $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(\mathrm{I}_{C P} / 2+f_{1} N_{1}\right)$
$I_{C C}=$ Quiescent Current
$\Delta I_{C C}=$ Power Supply Current for a TTL High Input $\left(V_{I N}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL inputs High
$N_{T}=$ Number of Inputs at D_{H}
ICCD $=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
${ }^{\prime}$ CP $=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1}=$ Input Frequency
$N_{I}=$ Number of Inputs at f_{l}
All currents are in milliamps and all frequencies are in megahertz.
Note 7: For $54 F C T$, $I_{C C D}=0.40 \mathrm{~mA} / \mathrm{MHz}$.
Refer to applicable standard military drawing or NSC Table I for test conditions and $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{CC}}$ limits.

AC Electrical Characteristics: See Section 2 for Waveforms

Symbol	Parameter	54FCT/74FCT					Units	Fig. No.
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ R_{\mathrm{L}}=500 \Omega \\ C_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ Min (Note) Max		$\begin{gathered} T_{A}, V_{C C}=C o m \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$			
		Typ			Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Dela! CP to O_{n}	6.6	2.0	10.0	2.0	11.0	ns	2.8
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	9.0	1.5	12.5	1.5	14.0	ns	2-11
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable Time	6.0	1.5	8.0	1.5	8.0	ns	2-11
${ }_{\text {t }}$	Set-Up Time High or Low D_{n} to CP	1.0	2.0		3.5		ns	2-10
t_{H}	Hold Time High or Low D_{n} to CP	0.5	2.0		2.0		ns	2-10
tw	CP Pulse Width High or Low	4.0	7.0		7.0		ns	2-9

Note: Minimum limits are guaranteed but not tested on propagation delays.
Capacitance ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter (iNote)	Typ	Max	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance	6	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{OV}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	8	12	pF	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{OV}$

Note: This parameter is measured during characterization but not tested.
Cout for 74FCT only.

