

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW
S	Common Data Select Input	2.5/2.5	1.0/0.5
$\overline{O E}$	3-State Output Enable Input (Active LOW)	1.25/1.25	0.5/0.25
loa - lod	Data Inputs from Source 0	1.25/1.25	0.5/0.25
$l_{1 a}$ - $l_{1 d}$	Data Inputs from Source 1	1.25/1.25	0.5/0.25
$\mathrm{Z}_{\mathrm{a}}-\mathrm{Z}_{\mathrm{d}}$	Multiplexer Outputs	$\begin{aligned} & 162 / 12.5 \\ & (50) \end{aligned}$	$\begin{array}{r} 65 / 5.0 \\ (25) /(2.5) \end{array}$

FUNCTIONAL DESCRIPTION - This device is a quad 2-input mulitplexer with 3-state outputs. It selects four bits of data from two sources under control of a Common Data Select input. When the Select input is LOW, the 10x inputs are selected and when Select is HIGH, the $l_{1 x}$ inputs are selected. The data on the selected inputs appears at the outputs in true (non-inverted) form. The device is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$
\begin{array}{ll}
Z_{a}=\overline{O E} \bullet\left(I_{1 a} \bullet S+10 a \bullet \bar{S}\right) & Z_{b}=\overline{O E} \bullet\left(I_{1 b} \bullet S+l_{0 b} \bullet \bar{S}\right) \\
Z_{c}=\overline{O E} \bullet\left(I_{1 c} \bullet S+l_{0 c} \bullet \bar{S}\right) & Z_{d}=\overline{O E} \bullet\left(l_{1 d} \bullet S+l_{0 d} \bullet \bar{S}\right)
\end{array}
$$

When the Output Enable input ($\overline{\mathrm{OE}}$) is HIGH, the outputs are forced to a high impedance OFF state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

TRUTH TABLE

OUTPUT ENABLE	SELECT INPUT	DATA INPUTS	OUTPUTS	
$\overline{O E}$	S	I_{0}	I_{1}	Z
H	X	X	X	(Z)
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$(Z)=$ High Impedance

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		54/74S		54/74LS		UNITS	CONDITIONS
			Min	Max	Min	Max		
ICC	Power Supply Current	Outputs HIGH		68	16		mA	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max} ; \mathrm{S}, I_{1 \mathrm{x}}=4.5 \mathrm{~V} ; \\ & \mathrm{OE}, \text { Iox }^{2}=\mathrm{Gnd} \end{aligned}$
		Outputs LOW	$\begin{aligned} & 93 \\ & 99 \end{aligned}$				$\begin{aligned} & V_{C C}=M a x ; I_{1 x}=4.5 \mathrm{~V} ; \\ & O E, 10 x, S=G n d \end{aligned}$	
		Outputs OFF				19		$\begin{aligned} & \mathrm{VCC}=\mathrm{Max} ; S, I_{0 \mathrm{x}}=\mathrm{Gnd} \\ & \mathrm{OE}, \mathrm{I}_{1 \mathrm{x}}=4.5 \mathrm{~V} \end{aligned}$

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	54/74S	54/74LS	UNITS	CONDITIONS
		$\begin{aligned} C \mathrm{~L} & =15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =280 \Omega \end{aligned}$	$C_{L}=15 \mathrm{pF}$		
		Min Max	Min Max		
tpLH tPHL	Propagation Delay In_{n} to Z_{n}	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	ns	Figs. 3-1, 3-5
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay S to Z_{n}	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	ns	Figs. 3-1, 3-20
$\begin{aligned} & \mathrm{tPZH} \\ & \text { tpZL } \end{aligned}$	Output Enable Time	$\begin{array}{r} 19.5 \\ 21 \end{array}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega(' \mathrm{LS} 257) \end{aligned}$
$\begin{aligned} & \text { tphz } \\ & \text { tpLz } \end{aligned}$	Output Disable Time	$\begin{array}{r} 8.5 \\ 14 \end{array}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF} \\ & \text { ('LS257) } \end{aligned}$

