CONNECTION DIAGRAM PINOUT A

54LS/74LS299 8-INPUT UNIVERSAL SHIFT/STORAGE REGISTER (With Common Parallel I/O Pins)
 DESCRIPTION - The '299 is an 8-bit universal shift/storage register with 3state outputs. Four modes of operation are possible: hold (store), shift left, shift right and load data. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Separate outputs are provided for flip-flops Q_{0} and Q_{7} to allow easy cascading. A separate active LOW Master Reset is used to reset the register.
 - COMMON I/O FOR REDUCED PIN COUNT
 - FOUR OPERATION MODES: SHIFT LEFT, SHIFT RIGHT, LOAD AND STORE
 - SEPARATE SHIfT RIGHT SERIAL INPUT AND SHIfT LEFT SERIAL INPUT FOR EASY CASCADING
 - 3-STATE OUTPUTS FOR BUS ORIENTED APPLICATIONS

ORDERING CODE: See Section 9

PKGS	PIN OUT	COMMERCIAL GRADE	MILITARY GRADE	$\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$
		$\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V C C=+5.0 \mathrm{~V} \pm 10 \%, \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	
Plastic DIP (P)	A	74LS299PC		92
Ceramic DIP (D)	A	74LS299DC	54LS299DM	4E
Flatpak (F)	A	74LS299FC	54LS299FM	4F

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74LS (U.L.) HIGH/LOW
CP	Clock Pulse Input (Active Rising Edge)	$0.5 / 0.25$
Dso	Serial Data Input for Right Shift	$0.5 / 0.25$
DS_{5}	Serial Data Input for Left Shift	$0.5 / 0.25$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Mode Select Inputs	$1.0 / 0.50$
$\overline{\mathrm{MR}}$	Asynchronous Master Reset Input (Active LOW)	$0.5 / 0.25$
$\mathrm{OE}_{1}, \overline{O E}_{2}$	3-State Output Enable Inputs (Active LOW)	$0.5 / 0.25$
$\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	Parallel Data Inputs or	$0.5 / 0.25$
	3-State Parallel Outputs	$65 / 15$
$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	Serial Outputs	$(25) / 7.5)$
		$10 / 5.0$

LOGIC SYMBOL

FUNCTIONAL DESCRIPTION - The '299 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by the S_{0} and S_{1}, as shown in the Mode Select Table. All flip-flop outputs are brought out through 3 -state buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Qo and Q_{7} are also brought out on other pins for expansion in serial shifting of longer words.

A LOW signal on $\overline{M R}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.

A HIGH signal on either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ disables the 3-state buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-state buffers are also disabled by HIGH signals on both S_{0} and S_{1} in preparation for a parallel load operation.

MODE SELECT TABLE

INPUTS				RESPONSE
$\overline{\mathrm{MR}}$	S1	So	CP	
L	X	X	X	Asynchronous Reset; $\mathrm{Q}_{0}-\mathrm{Q}_{7}=$ LOW
H	H	H	厂	Parallel Load; $1 / \mathrm{O}_{\mathrm{n}} \longrightarrow \mathrm{Q}_{\mathrm{n}}$
H	L	H	5	Shift Right; $\mathrm{Ds}^{\text {}} \rightarrow \mathrm{Q}_{0}, \mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}$, etc.
H	H	L	\checkmark	Shift Left; $\mathrm{DS7} \rightarrow \mathrm{Q}_{7}, \mathrm{Q}_{7} \longrightarrow \mathrm{Q}_{6}$, etc.
H	L	L	X	Hold

$H=$ HIGH Voltage Level $L=$ LOW Voltage Level
$X=$ Immaterial

SYMBOL	PARAMETER	54/74LS		UNITS	CONDITIONS
		Min	Max		
Icc	Power Supply Current		65	mA	$\mathrm{V}_{\text {cc }}=$ Max, $\overline{\mathrm{OE}}=4.5 \mathrm{~V}$

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER			UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$			
		MIN	Max		
$f_{\text {max }}$	Maximum Input Frequency	35		MHz	Figs. 3-1, 3-8
$\begin{aligned} & \overline{\text { tPLH }} \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to Q_{0} or Q_{7}		$\begin{aligned} & 23 \\ & 25 \end{aligned}$	ns	Figs. 3-1, 3-8
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to $1 / O_{n}$		$\begin{aligned} & 25 \\ & 29 \end{aligned}$	ns	
tPHL	Propagation Delay $\overline{M R}$ to Q_{0} or Q_{7}		30	ns	Figs. 3-1, 3-16
tPHL	Propagation Delay $\overline{M R}$ to $1 / O_{n}$		33	ns	
$\begin{aligned} & \text { tpZ } \\ & \text { tpze } \end{aligned}$	Output Enable Time		$\begin{aligned} & 18 \\ & 23 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$

AC OPERATING REQUIREMENTS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/74LS		UNITS	CONDITIONS
		Min	Max		
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 24 \\ & 24 \end{aligned}$		ns	Fig. 3-6
$\begin{aligned} & \operatorname{th}(H) \\ & \operatorname{th}(\mathrm{L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup Time HIGH or LOW I/On, Dso. Ds7 to CP	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$		ns	
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$	Hold Time HIGH or LOW I/On, Dso, Ds7 to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{w}(H) \\ & \mathrm{t}_{w}(L) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns	Fig. 3-8
$t_{w}(L)$	$\overline{M R}$ Pulse Width LOW	15		ns	Fig. 3-16
trec	Recovery Time $\overline{M R}$ to $C P$	10		ns	Fig. 3-16

