54LS/74LS323
 8-BIT UNIVERSAL SHIFT/STORAGE REGISTER (With Synchronous Reset and Common I/O Pins)

DESCRIPTION - The '323 is an 8-bit universal shift/storage register with 3state outputs. Its function is similar to the '299 with the exception of Synchronous Reset. Parallel load inputs and flip-flop outputs are multiplexed to minimize pin count. Separate inputs and outputs are provided for flip-flops Q_{0} and Q_{7} to allow easy cascading. Four operation modes are possible: hold (store), shift left, shift right, and parallel load. All modes are activated on the LOW-to-HIGH transition of the Clock.

- COMMON I/O FOR REDUCED PIN COUNT
- FOUR OPERATION MODES: SHIFT LEFT, SHIFT RIGHT, parallel load and store
- SEPARATE CONTINUOUS INPUTS AND OUTPUTS FROM Q_{0} AND \mathbf{Q}_{7} ALLOW EASY CASCADING
- FULLY SYNCHRONOUS RESET
- 3-STATE OUTPUTS FOR BUS ORIENTED APPLICATIONS

ORDERING CODE: See Section 9

PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE	MILITARY GRADE	$\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$
		$\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	
Plastic DIP (P)	A	74LS323PC		92
Ceramic DIP (D)	A	74LS323DC	54LS323DM	4E
Flapak (F)	A	74LS323FC	54LS323FM	4F

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74LS (U.L.) HIGH/LOW
CP	Clock Pulse Input (Active Rising Edge)	0.5/0.25
Dso	Serial Data Input for Right Shift	0.5/0.25
Ds7	Serial Data Input for Left Shift	0.5/0.25
$\mathrm{So}_{0} \mathrm{~S}_{1}$	Mode Select Inputs	1.0/0.50
SR	Synchronous Reset Input (Active LOW)	0.5/0.25
$\overline{\mathrm{OE}}, \overline{O E}_{2}$	3-State Output Enable Inputs (Active LOW)	0.5/0.25
$1 / O_{0}-1 / O_{7}$	Parallel Data Inputs or	1.0/0.50
	3-State Parallel Outputs	65/15
		(25)/(7.5)
Q0, Q7	Serial Outputs	$\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$

FUNCTIONAL DESCRIPTION - The '323 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous reset, shift left, shift right, parallel load and hold operations. The type of operation is determined by S_{0} and S_{1} as shown in the Mode Select Table. All flip-flop outputs are brought out through 3 -state buffers to separate I / O pins that also serve as data inputs in the parallel load mode. Q_{0} and Q_{7} are also brought out on other pins for expansion in serial shifting of longer words.

A LOW signal on $\overline{S R}$ overrides the Select inputs and allows the flip-flops to be reset by the next rising edge of CP. All other state changes are also initiated by the LOW-to-HIGH CP transition. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of $C P$, are observed.

A HIGH signal on either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ disables the 3 -state buffers and puts the I/O pins in the high impedance state. In this condition the shift, load, hold and reset operations can still occur. The 3 -state buffers are also disabled by HIGH signals on both S_{0} and S_{1} in preparation for a parallel load operation.

MODE SELECT TABLE

INPUTS				RESPONSE
$\overline{S R}$	S1	So	CP	
L	X	X	\checkmark	Synchronous Reset; $\mathrm{Q}_{0}-\mathrm{Q}_{7}=$ LOW
H	H	H	5	Parallel Load; $\mathrm{I} / \mathrm{O}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$
H	L	H	\checkmark	Shift Right; $\mathrm{D}_{\text {s }} \rightarrow \mathrm{Q}_{0}, \mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}$, etc.
H	H	L	5	Shift Left; $\mathrm{DS7}^{\text {- }} \mathrm{Q}_{7}, \mathrm{Q}_{7}-\mathrm{Q}_{6}$, etc.
H	H	H	X	Hold

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	54/74LS		UNITS
	Max	CONDITIONS		
Icc	Power Supply Current	60	mA	Vcc = Max, Outputs Disabled

AC CHARACTERISTICS: $\mathrm{VcC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

	PARAMETER			UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$			
		Min	Max		
$f_{\text {max }}$	Maximum Input Frequency	35		MHz	Figs. 3-1, 3-8
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay CP to Q_{0} or Q_{7}		$\begin{aligned} & 23 \\ & 25 \end{aligned}$	ns	Figs. 3-1, 3-8
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay CP to I / O_{n}		$\begin{aligned} & 25 \\ & 29 \end{aligned}$	ns	
tpZ	Output Enable Time		$\begin{aligned} & 18 \\ & 23 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns	Figs. 3-3, 3-11, 3-12 $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$

AC OPERATING REQUIREMENTS: $\mathrm{V} C \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/74LS		UNITS	CONDITIONS
		Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW So or S_{1} to CP	$\begin{aligned} & 24 \\ & 24 \end{aligned}$		ns	Fig. 3-6
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$	Hold Time HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
$\begin{aligned} & \mathbf{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW I/On, $\mathrm{D}_{\text {so, }} \mathrm{D}_{\mathrm{s} 7}$ to CP	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$		ns	Fig. 3-6
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$	Hold Time HIGH or LOW I/On, Dso, Ds7 to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
$\begin{aligned} & \mathbf{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW $\overline{S R}$ to $C P$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns	Fig. 3-6
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(\mathrm{L}) \end{aligned}$	Hold Time HIGH or LOW $\overline{S R}$ to $C P$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{tw}_{w}(H) \\ & \mathrm{tw}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns	Fig. 3-8

