DM74LS574 Octal D Flip-Flop with TRI-STATE ${ }^{\circledR}$ Outputs General Description The 'LS574 is a high speed low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ($\overline{\mathrm{OE}}$). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition. This device is functionally identical to the 'LS374 except for the pinouts. Connection Diagram Dual-In-Line Package Logic Symbol

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage
Operating Free Air Temperature Range
DM74LS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM74LS574		Units	
		Min	Nom		
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current			-2.6	mA
I_{OL}	Low Level Output Current			24	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time HIGH or LOW	20		ns	
$\mathrm{t}_{\mathrm{S}}(\mathrm{L})$	Dn to CP	20		n	
$\mathrm{t}_{\mathrm{h}}(\mathrm{H})$	Hold Time HIGH or LOW	0		n	
$\mathrm{t}_{\mathrm{h}}(\mathrm{L})$	Dn to CP	0		ns	
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	CP Pulse Width	15			
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	HIGH or LOW	15			

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	2.4	3.3		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=7 \mathrm{~V}$			0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-400	$\mu \mathrm{A}$
IOZH	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			20	$\mu \mathrm{A}$
IOZL	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			-20	$\mu \mathrm{A}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
IOS	Short Circuit (Note 2) Output Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$	-30		-130	mA
ICC	Supply Current	$\mathrm{V}_{C C}=\operatorname{Max}$ (Note 3)			45	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second
Note 3: $I_{C C}$ is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5 V .

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \end{aligned}$		Units
		Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	35		MHz
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to On		$\begin{aligned} & 28 \\ & 28 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 28 \\ & 28 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 20 \\ & 25 \end{aligned}$	ns

Functional Description

The LS574 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Outputs Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}})$ LOW, the contents of the eight flipflops are available at the outputs. When the $\overline{\mathrm{OE}}$ is HIGH, the outputs go to the high impedence state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

Truth Table

Inputs		Outputs	
Dn		CP	OE
H	-	On	
L	L	L	L
X	X	H	Z

$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
$Z=$ High Impedance

Logic Diagram

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

