54FCT/74FCT374
 Octal D Flip-Flop with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'FCT374 is a high-speed, low-power octal D-type flipflop featuring separate D-type inputs for each flip-flop and TRI-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable ($\overline{\mathrm{OE}}$) are common to all flip-flops.
FACTTM FCT utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.

FACT FCT features GTOTM output control and undershoot corrector in addition to a split ground bus for superior performance.

Features

- NSC 54FCT/74FCT374 is pin and functionally equivalent to IDT 54FCT/74FCT374
- Controlled output edge rates and undershoot for improved noise immunity. Internal split ground for improved noise immunity
- Input clamp diodes to limit bus reflections
- TTL/CMOS input and output level compatible
- lol $=48 \mathrm{~mA}$ (commercial) and 32 mA (military)
- CMOS power levels
- ESD immunity $\geq 4 \mathrm{kV}$ typ
- Military product compliant to MIL-STD 883 and standard military drawing \#5962-87628

Ordering Code: See Section 8

Logic Symbols

IEEE/IEC

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$\overline{C P}$	Clock Pulse Input
$\overline{O E}$	TRI-STATE Output Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	TRI-STATE Outputs

Pin Assignment for DIP, Flatpak and SOIC

TL/F/10243-3

Functional Description

The 'FCT374 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (OE) LOW, the contents of the eight flipflops are available at the outputs. When the $\overline{\mathrm{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{O E}$ input does not affect the state of the flip-flops.

Truth Table

Inputs			Outputs
D_{n}	$C P$	$\overline{O E}$	O_{n}
H	-	L	H
L	Γ	L	L
X	X	H	Z

H $=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance
$\Omega=$ LOW-to-HIGH Transition

Logic Diagram

TL/F/10243-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Terminal Voltage
with Respect to GND (VTERM)

54FCT
74FCT
Temperature under Bias (TBIAS)
74FCT
54FCT
Storage Temperature (TSTG)
74FCT
54FCT
Power Dissipation (P_{T})
DC Output Current (lout)
-0.5 V to 7.0 V
-0.5 V to 7.0 V

$$
\begin{aligned}
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -65^{\circ} \mathrm{C} \text { to }+135^{\circ} \mathrm{C}
\end{aligned}
$$

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
0.5 W

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to absolute maximum rating conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables.

Recommended Operating

 Conditions| Supply Voltage (VCC) | |
| :--- | ---: |
| 54 FCT | 4.5 V to 5.5 V |
| 74 FCT | 4.75 V to 5.25 V |
| Input Voltage | 0 V to V_{CC} |
| Output Voltage | 0 V to VCC |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{C}}\right)$ | |
| 54 FCT | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| 74FCT | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Junction Temperature $\left(T_{J}\right)$ | |
| CDIP | $175^{\circ} \mathrm{C}$ |
| PDIP | $140^{\circ} \mathrm{C}$ |

DC Characteristics for 'FCT Family Devices

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$.

Symbol	Parameter	54FCT/74FCT			Units	Conditions		
		Min	Typ	Max				
V_{IH}	Minimum High Level Input Voltage	2.0			V			
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage			0.8	V			
$I_{1 H}$	Input High Current			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$V_{C C}=\operatorname{Max}$	$\begin{aligned} & V_{1}=V_{C C} \\ & V_{1}=2.7 V \text { (Note 2) } \end{aligned}$	
IIL	Input Low Current			$\begin{aligned} & -5.0 \\ & -5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=\mathrm{Max}$	$\begin{aligned} & V_{1}=0.5 \mathrm{~V}(\text { Note } 2) \\ & V_{1}=G N D \end{aligned}$	
loz	Maximum TRI-STATE Current			$\begin{gathered} 10.0 \\ 10.0 \\ -10.0 \\ -10.0 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=\mathrm{Max}$	$\begin{aligned} & V_{O}=V_{C C} \\ & V_{O}=2.7 \mathrm{~V} \text { (Note 2) } \\ & V_{O}=0.5 \mathrm{~V} \text { (Note 2) } \\ & V_{O}=G N D \end{aligned}$	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage		-0.7	-1.2	V	$\mathrm{V}_{C C}=\mathrm{Min} ; \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		
los	Short Circuit Current	-60	-120		mA	$\mathrm{V}_{\text {CC }}=\operatorname{Max}$ (Note 1); $\mathrm{V}^{\text {a }}$	GND	
V OH	Minimum High Level Output Voltage	2.8 3.0 $V_{H C}$ $V_{C C}$ 2.4 4.3 2.4 4.3			V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} ; \mathrm{l}_{\mathrm{OH}}=-32 \mu \mathrm{~A}$		
					$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I N}=V_{\mathbb{I H}} \text { or } V_{\mathbb{I L}} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-300 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}(\mathrm{Mil}) \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}(\mathrm{Com}) \end{aligned}$		
V OL	Maximum Low Level Output Voltage		GND	0.2		V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} ; \mathrm{I}_{\mathrm{OL}}=300 \mu \mathrm{~A}$	
			$\begin{gathered} \text { GND } \\ 0.3 \\ 0.3 \\ \hline \end{gathered}$	$\begin{gathered} 0.2 \\ 0.50 \\ 0.50 \end{gathered}$	$\begin{aligned} & V_{C C}=M i n \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=300 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}(\mathrm{Mil}) \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}(\mathrm{Com}) \end{aligned}$	
ICC	Maximum Quiescent Supply Current		0.001	1.5	mA	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max} \\ & V_{I N} \geq V_{H C}, V_{I N} \leq 0.2 \mathrm{~V} \\ & f_{\mathrm{I}}=0 \end{aligned}$		
$\Delta l_{C C}$	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	$\begin{aligned} & V_{C C}=M a x \\ & V_{I N}=3.4 \mathrm{~V}(\text { Note } 3) \end{aligned}$		

DC Characteristics for 'FCT Family Devices (Continued)
Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: $\mathrm{Com}: \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$.

Symbol	Parameter	74FCT			Units	Conditions	
		Min	Typ	Max			
ICCD	Dynamic Power Supply Current (Note 4)		0.15	0.25	$\mathrm{mA} / \mathrm{MHz}$	$V_{C C}=\operatorname{Max}$ Outputs Open One Input Toggling 50\% Duty Cycle	$\begin{aligned} & V_{I N} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$
I^{\prime}	Total Power Supply Current (Note 6)		1.5	4.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ Outputs Open $\begin{aligned} & \mathrm{f}_{\mathrm{CP}}=10 \mathrm{MHz} \\ & \mathrm{OE}=\mathrm{GND} \\ & \mathrm{f}_{1}=5 \mathrm{MHz} \end{aligned}$ One Bit Toggling 50\% Duty Cycle	$\begin{aligned} & V_{\text {IN }} \geq V_{H C} \\ & V_{\text {IN }} \leq 0.2 \mathrm{~V} \end{aligned}$ $\begin{aligned} & V_{\mathbb{N}}=3.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}=\mathrm{GND} \end{aligned}$
			3.0	7.8		(Note 5) $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ Outputs Open $\begin{aligned} & \mathrm{f}_{\mathrm{CP}}=10 \mathrm{MHz} \\ & \overline{\mathrm{OE}}=\mathrm{GND} \\ & \mathrm{f}_{\mathrm{I}}=2.5 \mathrm{MHz} \end{aligned}$ Eight Bits Toggling 50\% Duty Cycle	$\begin{aligned} & V_{I N} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$
			5.0	16.8			$\begin{aligned} & V_{I N}=3.4 V \\ & V_{I N}=G N D \end{aligned}$

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.
Note 2: This parameter guaranteed but not tested.
Note 3: Per TTL driven input ($\mathrm{V}_{1 \mathrm{~N}}=3.4 \mathrm{~V}$); all other inputs at V_{CC} or GND.
Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
Note 5: Values for these conditions are examples of the ICC formula. These limits are guaranteed but not tested.
Note 6: $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f C P / 2+f_{I} N_{1}\right)$
$l^{\prime} \subset=$ Quiescent Current
$\Delta I_{C C}=$ Power Supply Current for a TTL High Input ($V_{I N}=3.4 \mathrm{~V}$)
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of Inputs at D_{H}
ICCD $=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathbf{i}_{\mathbf{C P}}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\hat{f}_{1}=$ Input Frequency
$N_{l}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.
Note 7: For $54 F C T$, ICCD $=0.40 \mathrm{~mA} / \mathrm{MHz}$.
Refer to applicable standard military drawing or NSC Table I for test conditions and $\mathrm{I} / \mathrm{I}_{\mathrm{Cc}}$ limits.

AC Electrical Characteristics: See Section 2 for Waveforms

Symbol	Parameter	54FCT/74FCT	74FCT		54FCT		Units	Fig. No.
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} T_{A}, V_{C C}=C o m \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=M i I \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$			
		Typ	Min (Note 1)	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay C_{p} to O_{n}	6.6	2.0	10.0	2.0	11.0	ns	2-8
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	9.0	1.5	12.5	1.5	14.0	ns	2-11
$\begin{aligned} & \mathrm{t}_{\text {PHZ }} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	6.0	1.5	8.0	1.5	8.0	ns	2-11
${ }^{\text {tsu }}$	Set Up Time High or Low $D_{n} \text { to } C_{p}$	1.0	2.0		2.5		ns	2-10
${ }_{\text {th }}$	Hold Time High or Low $D_{n} \text { to } C p$	0.5	2.0		2.5		ns	2-10
${ }^{\text {tw }}$	C_{p} Pulse Width High or Low	4.0	7.0		7.0		ns	2-9

Note 1: Minimum limits are guaranteed but not tested on propagation delays.
Capacitance $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter (Note 1)	Typ	Max	Unit	Condition
$\mathrm{C}_{\mathbb{N}}$	Input Capacitance	6	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{OV}$
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	8	12	pF	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{OV}$

Note 1: This parameter is measured at characterization but not tested.
Cout for 74FCT only.

