

## Functional Description

The LCX157 is a quad 2－input multiplexer．It selects four bits of data from two sources under the control of a com－ mon Select input（S）．The Enable input（ E ）is active－LOW． When $\bar{E}$ is HIGH，all of the outputs（Z）are forced LOW regardless of all other inputs．The LCX157 is the logic implementation of a 4－pole，2－position switch where the position of the switch is determined by the logic levels sup－ plied to the Select input．The logic equations for the outputs are shown below：

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{E}} \cdot\left(\mathrm{I}_{1 \mathrm{a}} \cdot \mathrm{~S}+\mathrm{I}_{0 \mathrm{a}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{E}} \cdot\left(\mathrm{I}_{1 \mathrm{~b}} \cdot \mathrm{~S}+\mathrm{I}_{0 \mathrm{~b}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathrm{Z}_{\mathrm{c}}=\overline{\mathrm{E}} \cdot\left(\mathrm{I}_{1 \mathrm{c}} \cdot \mathrm{~S}+\mathrm{I}_{0 \mathrm{c}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathrm{Z}_{\mathrm{d}}=\overline{\mathrm{E}} \cdot\left(\mathrm{I}_{1 \mathrm{~d}} \cdot \mathrm{~S}+\mathrm{I}_{0 \mathrm{~d}} \cdot \overline{\mathrm{~S}}\right)
\end{aligned}
$$

A common use of the LCX157 is the moving of data from two groups of registers to four common output busses．The particular register from which the data comes is determined by the state of the Select input．A less obvious use is as a function generator．The LCX157 can generate any four of the sixteen different functions of two variables with one variable common．This is useful for implementing gating functions．

## Truth Table

| Inputs |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathbf{E}}$ | $\mathbf{S}$ | $\mathrm{I}_{\mathbf{0}}$ | $\mathbf{I}_{\mathbf{1}}$ | Outputs |
| H | X | X | X | L |
| L | H | X | L | L |
| L | H | X | H | H |
| L | L | L | X | L |
| L | L | H | X | H |

＝HIGH Voltage Leve
－＝LOW Voltage Level
$\mathrm{X}=$ Immaterial

## Logic Diagram



Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays．

| Absolute Maximum Ratings（Note 1） |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Value | Conditions |  |  | Units |
| $\mathrm{V}_{\text {CC }}$ | Supply Voltage | -0.5 to +7.0 |  |  |  | V |
| $\mathrm{V}_{1}$ | DC Input Voltage | -0.5 to +7.0 |  |  |  | V |
| $\mathrm{V}_{\mathrm{O}}$ | DC Output Voltage | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$ | Output in HIGH or L | W State | te 2） | V |
| $\mathrm{I}_{\mathrm{IK}}$ | DC Input Diode Current | －50 | $\mathrm{V}_{1}<\mathrm{GND}$ |  |  | mA |
| $\mathrm{l}_{\mathrm{OK}}$ | DC Output Diode Current | $\begin{array}{r} -50 \\ +50 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{O}}<\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \end{aligned}$ |  |  | mA |
| $\mathrm{I}_{0}$ | DC Output Source／Sink Current | $\pm 50$ |  |  |  | mA |
| $\mathrm{I}_{\mathrm{CC}}$ | DC Supply Current per Supply Pin | $\pm 100$ |  |  |  | mA |
| $\mathrm{I}_{\text {GND }}$ | DC Ground Current per Ground Pin | n $\quad \pm 100$ |  |  |  | mA |
| $\mathrm{T}_{\text {STG }}$ | Storage Temperature | －65 to＋150 |  |  |  | ${ }^{\circ} \mathrm{C}$ |
| Recommended Operating Conditions（Note 3） |  |  |  |  |  |  |
| Symbol | Parameter |  |  | Min | Max | Units |
| $\mathrm{V}_{\text {CC }}$ | Supply Voltage |  | Operating Data Retention | $\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & \hline 3.6 \\ & 3.6 \end{aligned}$ | V |
| $\mathrm{V}_{1}$ | Input Voltage |  |  | 0 | 5.5 | V |
| $\mathrm{V}_{\mathrm{O}}$ | Output Voltage | HIGH or LOW State |  | 0 | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{IOH} / \mathrm{l}_{\mathrm{OL}}$ | Output Current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}-2.7 \mathrm{~V} \end{aligned}$ |  |  | $\begin{gathered} \pm 24 \\ \pm 12 \\ \pm 8 \end{gathered}$ | mA |
| $\mathrm{T}_{\mathrm{A}}$ | Free－Air Operating Temperature |  |  | －40 | 85 | ${ }^{\circ} \mathrm{C}$ |
| $\Delta \mathrm{t} / \Delta \mathrm{V}$ | Input Edge Rate， $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ |  |  | 0 | 10 | $\mathrm{ns} / \mathrm{V}$ |
| Note 1：The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed．The device should not be operated at these limits．The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings．The＂Recom－ mended Operating Conditions＂table will define the conditions for actual device operation． <br> Note 2： $\mathrm{I}_{\mathrm{O}}$ Absolute Maximum Rating must be observed． <br> Note 3：Unused inputs must be held HIGH or LOW．They may not float． <br> DC Electrical Characteristics |  |  |  |  |  |  |
| Symbol | Parameter | Conditions | $\mathrm{V}_{\mathrm{cc}}$ <br> （V） | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | Units |
|  |  |  |  | Min | Max |  |
| $\overline{\mathrm{V}_{\mathrm{IH}}}$ | HIGH Level Input Voltage |  | 2．3－2．7 | 1.7 |  | V |
|  |  |  | 2．7－3．6 | 2.0 |  |  |
| $\overline{\mathrm{V}} \mathrm{IL}$ | LOW Level Input Voltage |  | 2．3－2．7 |  | 0.7 | V |
|  |  |  | 2．7－3．6 |  | 0.8 |  |
| $\overline{\mathrm{V}} \mathrm{OH}$ |  | $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ | 2．3－3．6 | $\mathrm{V}_{\mathrm{CC}}-0.2$ |  | v |
|  |  | $\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$ | 2.3 | 1.8 |  |  |
|  |  | $\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$ | 2.7 | 2.2 |  |  |
|  |  | $\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$ | 3.0 | 2.4 |  |  |
|  |  | $\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$ | 3.0 | 2.2 |  |  |
| $\overline{\mathrm{V}} \mathrm{OL}$ | LOW Level Output Voltage | $\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$ | 2．3－3．6 |  | 0.2 | v |
|  |  | $\mathrm{I}_{\mathrm{OH}}=8 \mathrm{~mA}$ | 2.3 |  | 0.6 |  |
|  |  | $\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$ | 2.7 |  | 0.4 |  |
|  |  | $\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$ | 3.0 |  | 0.4 |  |
|  |  | $\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$ | 3.0 |  | 0.55 |  |
| I | Input Leakage Current | $0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$ | 2．3－3．6 |  | $\pm 5.0$ | $\mu \mathrm{A}$ |
| IofF | Power－Off Leakage Current | $\mathrm{V}_{1} \text { or } \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ | 0 |  | 10 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | Quiescent Supply Current | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND | 2．3－3．6 |  | 10 | $\mu \mathrm{A}$ |
|  |  | $3.6 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$ | 2．3－3．6 |  | $\pm 10$ |  |
| $\triangle{ }^{\Delta \mathrm{l}_{\mathrm{CC}}}$ | Increase in ICC per Input | $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ | 2．3－3．6 |  | 500 | $\mu \mathrm{A}$ |

## AC Electrical Characteristics



## Dynamic Switching Characteristics

| Symbol | Parameter | Conditions | $\mathrm{V}_{\text {cc }}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (V) | Typical |  |
| $\mathrm{V}_{\text {OLP }}$ | Quiet Output Dynamic Peak $\mathrm{V}_{\mathrm{OL}}$ | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{CL}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & \hline 0.8 \\ & 0.6 \end{aligned}$ | V |
| $\mathrm{V}_{\text {OLV }}$ | Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$ | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{CL}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & \hline-0.8 \\ & -0.6 \end{aligned}$ | V |

## Capacitance

| Symbol | Parameter | Conditions | Typical | Units |
| :--- | :--- | :--- | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}}$ | Input Capacitance | $\mathrm{V}_{\mathrm{CC}}=O p e n, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}$ | 7 | pF |
| $\mathrm{C}_{\text {OUT }}$ | Output Capacitance | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}$ | 8 | pF |
| $\mathrm{C}_{\mathrm{PD}}$ | Power Dissipation Capacitance | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, f=10 \mathrm{MHz}$ | 25 | pF |

## AC LOADING and WAVEFORMS Generic for LCX Family



FIGURE 1. AC Test Circuit ( $C_{L}$ includes probe and jig capacitance)

| Test | Switch |
| :---: | :---: |
| $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$ | Open |
| $\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$ | 6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$ <br>  <br>  <br> $\mathrm{~V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$ |
| $\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$ | GND |



Waveform for Inverting and Non-Inverting Functions


Propagation Delay. Pulse Width and $\mathrm{t}_{\mathrm{rec}}$ Waveforms


3-STATE Output High Enable and Disable Times for Logic


3-STATE Output Low Enable and Disable Times for Logic


Setup Time, Hold Time and Recovery Time for Logic


FIGURE 2. Waveforms
(Input Characteristics; $f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$ )

| Symbol | $\mathrm{V}_{\mathbf{C C}}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$ | $\mathbf{2 . 7 V}$ | $\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$ |
| $\mathrm{V}_{\mathrm{mi}}$ | 1.5 V | 1.5 V | $\mathrm{~V}_{\mathrm{CC}} / 2$ |
| $\mathrm{~V}_{\mathrm{mo}}$ | 1.5 V | 1.5 V | $\mathrm{~V}_{\mathrm{CC}} / 2$ |
| $\mathrm{~V}_{\mathrm{x}}$ | $\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$ | $\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$ | $\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$ |
| $\mathrm{~V}_{\mathrm{y}}$ | $\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$ | $\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$ | $\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$ |



Physical Dimensions inches (millimeters) unless otherwise noted


Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
