74LCX16373

Low-Voltage 16-Bit Transparent Latch with 5V Tolerant Inputs and Outputs

General Description

The LCX16373 contains sixteen non-inverting latches with TRI-STATE ${ }^{\circledR}$ outputs and is intended for bus oriented applications. The device is byte controlled. The flip-flops appear transparent to the data when the Latch Enable (LE) is HIGH. When LE is low, the data that meets the setup time is latched. Data appears on the bus when the Output Enable (OE) is LOW. When OE is HIGH, the outputs are in high Z state.
The LCX16373 is designed for low voltage (3.3V) Vcc applications with capability of interfacing to a 5 V signal environment.
The LCX16373 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5.4 ns tpd max, $20 \mu \mathrm{~A}$ ICCO max
- 5V tolerant inputs and outputs
- Power down high impedance inputs and outputs
- $2.0 \mathrm{~V}-3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ supply operation
- $\pm 24 \mathrm{~mA}$ output drive
- Implements patented Quiet Series ${ }^{\text {TM }}$ noise/EMI reduc. tion circuitry
- Functionally compatible with the 74 series 16373
- Latch-up performance exceeds 500 mA
- ESD performance:

Human body model > 2000V
Machine model > 200V

Logic Symbol

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable Input (Active Low)
LE	Latch Enable Input
$\mathrm{I}_{0}-I_{15}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{15}$	Outputs

	SSOP	TSSOP
Order Number	74LCX16373MEA 74LCX16373MEAX	74LCX16373MTD 74LCX16373MTDX
See NS Package Number	MS48A	MTD48

Connection Diagram

$$
\begin{aligned}
& \text { Pin Assignment for } \\
& \text { SSOP and TSSOP }
\end{aligned}
$$

Functional Description

The LCX16373 contains sixteen D-type latches with TRI-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full $16-$ bit operation. The following description applies to each byte. When the Latch Enable (LE n) input is HIGH, data on the D_{n} enters the latches. In this condition the latches are transparent, i.e. a latch output will change states each time its D input changes. When $L E_{n}$ is LOW, the latches store information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE n. The TRI-STATE standard outputs are controlled by the Output Enable $\left(\overline{O E}_{n}\right)$ input. When $\overline{O E}_{n}$ is LOW, the standard outputs are in the 2-state mode. When $\overline{\mathrm{OE}}_{n}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Tables

Inputs			Outputs
$\mathrm{LE}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{0}}-\mathrm{I}_{\mathbf{7}}$	$\mathrm{O}_{\mathbf{0}}-\mathrm{O}_{\mathbf{7}}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	$\mathrm{O}_{\mathbf{0}}$

Inputs			Outputs
LE_{2}	$\overline{\mathrm{OE}}_{2}$	$\mathrm{I}_{8}-\mathrm{I}_{15}$	$\mathrm{O}_{8}-\mathrm{O}_{15}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}

$H=$ High Voltage Level
L = Low Voltage Level
$X=$ Immaterial
$Z=$ High Impedance
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH to LOW transition of Latch Enable

Logic Diagrams

TL/F/12002-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.

Symbol	Parameter	Value	Conditions	Units
$V_{C C}$	Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{O}	DC Output Voltage	-0.5 to +7.0	Output in TRI-STATE	V
		-0.5 to $V_{C C}+0.5$	Output in High or Low State (Note 2)	V
IIK	DC Input Diode Current	-50	$V_{1}<$ GND	mA
lok	DC Output Diode Current	$\begin{array}{r} -50 \\ +50 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}<\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \end{aligned}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current per Supply Pin	± 100		mA
IGND	DC Ground Current per Ground Pin	± 100		mA
TSTG	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: I O Absolute Maximum Rating must be observed.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
$V_{\text {cc }}$	Supply Voltage Operating Data Retention	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0	5.5	V
V_{0}	Output Voltage HIGH or LOW State TRI-STATE	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
$1 \mathrm{OH} / \mathrm{l}_{\mathrm{OL}}$	Output Current $\quad$$\mathrm{V} C \mathrm{CC}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\begin{aligned} & \pm 24 \\ & \pm 12 \end{aligned}$	mA
$\mathrm{T}_{\text {A }}$	Free-Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Edge Rate, $\mathrm{V}_{1 \mathrm{~N}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	ns/V

DC Electrical Characteristics

Symbol	Parameter	Conditions	$V_{c c}$ (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
V_{IH}	HIGH Level Input Voltage		2.7-3.6	2.0		V
V_{IL}	LOW Level Input Voltage		2.7-3.6		0.8	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{IOH}=-12 \mathrm{~mA}$	2.7	2.2		V
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		V
		$\mathrm{IOH}^{\text {O }}$ - -24 mA	3.0	2.2		V
V_{OL}	LOW Level Output Voltage	$\mathrm{IOL}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	V
		$1 \mathrm{OL}=12 \mathrm{~mA}$	2.7		0.4	V
		$\mathrm{IOL}=16 \mathrm{~mA}$	3.0		0.4	V
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	V
1	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
loz	TRI-STATE Output Leakage	$\begin{aligned} & 0 \leq V_{O} \leq 5.5 V \\ & V_{1}=V_{I H} \text { or } V_{1 L} \end{aligned}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
loff	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		100	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2.7-3.6		20	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 20	$\mu \mathrm{A}$
$\Delta l_{\text {c }}$	Increase in Icc per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				Units
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
		Min	Max	Min	Max	
${ }^{\text {tPHL }}$ $t_{\text {PLH }}$	Propagation Delay D_{n} to O_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.9 \end{aligned}$	ns
${ }^{\text {tpHL }}$ tplH	Propagation Delay LE to O_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.4 \end{aligned}$	ns
$\begin{aligned} & \mathrm{tpZL} \\ & \mathrm{t}_{\mathrm{pZH}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & \hline 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.3 \end{aligned}$	ns
is	Setup Time, D_{n} to LE	2.5		2.5		ns
t_{H}	Hold Time, D_{n} to LE	1.5		1.5		ns
${ }_{\text {tw }}$	LE Pulse Width	3.0		3.0		ns
toshl tosth	Output to Output Skew (Note 1)		$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			ns

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (LOSHD) or LOW to HIGH (LOSLH). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$V_{C C}$ (V)	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak V ${ }_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V
Volv	Quiet Output Dynamic Valley VOL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=O$ Open, $\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	pF	
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, F=10 \mathrm{MHz}$	20	pF

74LCX16373 Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Package Code MEA = Shrink Small Outline Package (48-Lead) MTD $=$ Thin Shrink Small Outline Package, JEDEC, 6.1 mm Body Width

