74LCX16373

Low-Voltage 16-Bit Transparent Latch with 5V Tolerant Inputs and Outputs

General Description

The LCX16373 contains sixteen non-inverting latches with TRI-STATE® outputs and is intended for bus oriented applications. The device is byte controlled. The flip-flops appear transparent to the data when the Latch Enable (LE) is HIGH. When LE is low, the data that meets the setup time is latched. Data appears on the bus when the Output Enable (OE) is LOW. When OE is HIGH, the outputs are in high Z state.
The LCX16373 is designed for low voltage (3.3V) $\mathrm{V}_{\text {cc }}$ applications with capability of interfacing to a 5 V signal environment.
The LCX16373 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- Ideal for low power/low noise 2.7 V to 3.6 V applications
- Power-down static overvoltage protection on inputs and outputs
- Outputs source/sink 24 mA
- Available in SSOP and TSSOP
- Implements patented Quiet Series noise/EMI reduction circuitry
- Functionally compatible with the 74 series 16373
- Latchup performance exceeds 300 mA
- ESD performance:

Human Body Model > 2000V
Machine Model >250V

Ordering Code: See Section 11

Logic Symbol

Pin Names	Description
$\overline{O E}$	Output Enable Input (Active Low)
$L E_{n}$	Latch Enable Input
$I_{0}-I_{15}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{15}$	Outputs

	SSOP EIAJ	TSSOP JEDEC
Order Number	74LCX16373MEA 74LCX16373MEAX	74LCX16373MTD 74LCX16373MTDX
See NS Package Number	MS48A	MTD48

Conection Diagram

Preliminary Data: National Semiconductor reserves the right to make changes at any time without notice.

Functional Description

The LCX16373 contains sixteen D-type latches with TRI-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16 -bit operation. The following description applies to each byte. When the Latch Enable (LEn) input is HIGH, data on the D_{n} enters the latches. In this condition the latches are transparent, i.e. a latch output will change states each time its D input changes. When $L E_{n}$ is LOW, the latches store information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of $L E_{\mathrm{n}}$. The TRI-STATE standard outputs are controlled by the Output Enable $\left(\overline{O E} \bar{n}_{n}\right)$ input. When $\overline{\mathrm{OE}}{ }_{n}$ is LOW, the standard outputs are in the 2-state mode. When $\overline{O E}_{n}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Tables

Inputs			Outputs
$\mathrm{LE}_{\mathbf{1}}$	$\overline{\mathrm{O}}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{0}}-\mathrm{I}_{\mathbf{7}}$	$\mathbf{O}_{\mathbf{0}}-\mathbf{O}_{\mathbf{7}}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	$\mathrm{O}_{\mathbf{0}}$

Inputs			
$\mathrm{LE}_{\mathbf{2}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{8}}-\mathrm{I}_{\mathbf{1 5}}$	Outputs
X	H	O	$\mathbf{O}_{\mathbf{1 5}}$
H	L	L	Z
H	L	H	L
L	L	X	H

H = High Voltage Level
L = Low Voltage Level
$X=$ Immaterial
Z $=$ High Impedance
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH to LOW transition of Latch Enable

Logic Diagrams

TL/F/12002-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage (V_{CC})
-0.5 V to +7.0 V
DC Input Voltage (V_{1})
-0.5 V to +7.0 V
Output Voltage (V_{O})
Outputs TRI-STATE
-0.5 V to +7.0 V
Outputs Active (Note 2)
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current ($I_{1 K}$) $V_{1}<0$
DC Output Diode Current (IOK)

$$
v_{0}<0
$$

$V_{O}>V_{C C}$
DC Output Source/Sink Current ($\mathrm{lOH} / \mathrm{IOL}^{2}$

$$
-50 \mathrm{~mA}
$$

$-50 \mathrm{~mA}$
$+50 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
DC V ${ }_{C C}$ or Ground Current per Supply Pin (ICC or IGND)
$\pm 100 \mathrm{~mA}$ Storage Temperature Range ($T_{\text {STG }}$) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: I_{O} Absolute Maximum Rating must be observed.

Recommended Operating Conditions

Supply Voltage
Operating $\quad 2.0 \mathrm{~V}$ to 3.6 V
Data Retention Only
Input Voltage (V_{1})
1.5 V to 3.6 V

Output Voltage (V_{O}) Output in Active State
0.0 V to V_{CC} 0.0 V to 5.5 V

Output Current $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{lOL}^{2}$
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.0 V
Free Air Operating Temperature (T_{A})
$-40^{\circ} \mathrm{C}$
Minimum Input Edge Rate ($\Delta \mathrm{t} / \Delta \mathrm{V}$)
$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$10 \mathrm{~ns} / \mathrm{V}$

DC Electrical Characteristics

Symbol	Parameter	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Max		
V_{1}	High Level Input Voltage	2.7-3.6	2.0		V	$\begin{aligned} & \mathrm{V}_{\text {OUT }} \leq 0.1 \mathrm{~V} \text { or } \\ & 2 \mathrm{~V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	2.7-3.6		0.8		
V OH	High Level Output Voltage	$\begin{gathered} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.2 \\ 2.4 \\ 2.2 \\ \hline \end{gathered}$		V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$
V_{OL}	Low Level Output Voltage	$\begin{gathered} 2.7-3.6 \\ 2.7 \\ 3.0 \end{gathered}$		$\begin{gathered} 0.2 \\ 0.4 \\ 0.55 \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{IOL}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
1	Input Leakage Current	2.7-3.6		± 5.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$
loz	TRI-STATE Output Leakage	2.7-3.6		± 5.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}
IOFF	Power Off Leakage Current	0		100	$\mu \mathrm{A}$	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$
ICC	Quiescent Supply Current	2.7-3.6		20	$\mu \mathrm{A}$	$V_{1}=V_{\text {cc }}$ or GND
				± 20	$\mu \mathrm{A}$	$3.6 \leq\left(V_{1}, \mathrm{~V}_{0}\right) \leq 5.5 \mathrm{~V}$
$\Delta l_{\text {CC }}$	Increase in ICC per Input	2.7-3.6		500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$

AC Electrical Characteristics: See Section 2 for Test Methodology

Symbol	Parameter	VCC (V)	$\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	$\begin{gathered} \text { Max } \\ \text { (Note 2) } \\ \hline \end{gathered}$	
tpHL, tPLH	Propagation Delay Data to Output	$\begin{gathered} 2.7 \\ 3.0-3.6 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.7 \\ & 7.0 \\ & \hline \end{aligned}$	ns
$t_{\text {PHL }}$, tpli	Propagation Delay LE to Output	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 7.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.2 \end{aligned}$	ns
$\begin{aligned} & \text { tpHZ }^{2} \\ & t_{\text {PLZ }} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{gathered} 2.7 \\ 3.0-3.6 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.2 \\ & \hline \end{aligned}$	ns
ts	Setup Time	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		ns
t_{H}	Hold Time	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		ns
tw	Clock Pulse Width	$\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		ns
toshl, tosth	Output to Output Skew (Note 1)	3.0		1.0	ns

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (LOSHU) or LOW to HIGH (tOSLH). Parameter guaranteed by design.
Note 2: The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.

Dynamic Switching Characteristics: See Section 2 for Test Methodology

Symbol	Parameter	VCC (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units	Conditions
			Typical		
Volp	Quiet Output Dynamic Peak V_{OL}	3.3	0.8	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$
Volv	Quiet Output Dynamic Valley V OL	3.3	0.8	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$

Capacitance

Symbol	Parameter	Typical	Units	Conditions
C_{IN}	Input Capacitance	7	pF	$\mathrm{V}_{\mathrm{CC}}=$ Open $\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	8	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ $\mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}
C_{PD}	Power Dissipation Capacitance	32	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ $\mathrm{F}=10 \mathrm{MHz}$

