## 74LCX16652

## Low-Voltage Transceiver/Register with 5V Tolerant Inputs and Outputs

## General Description

The LCX16652 contains sixteen non-inverting bidirectional bus transceivers with TRI-STATE® outputs providing multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to the HIGH logic level. Output Enable pins (OEAB, OEBA) are provided to control the transceiver function.
The LCX16652 is designed for low-voltage (3.3V) $\mathrm{V}_{\mathrm{CC}}$ applications with capability of interfacing to a 5 V signal environment.
The LCX16652 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

## Features

- 5V tolerant inputs and outputs
- Ideal for low power/low noise 2.7 to 3.6 V applications
- Power-down static overvoltage protection on inputs and outputs
- Outputs source/sink 24 mA
- Guaranteed simultaneous switching noise level
- Available in SSOP and TSSOP
- Implements patented Quiet Series noise/EMI reduction circuitry
- Functionally compatible with the 74 series 16652
- Latch-up performance exceeds 300 mA
- ESD performance:

Human Body Model > 2000V
Machine Model > 250V

Ordering Code: see Section 11

Logic Symbol

|  | SSOP EIAJ | TSSOP JEDEC |
| :--- | :---: | :---: |
| Order Number | 74LCX16652MEA | 74LCX16652MTD |
|  | 74LCX16652MEAX | 74LCX16652MTDX |
| See NS Package Number | MS56A | MTD56 |

Preliminary Data: National Semiconductor reserves the right to make changes at any time without notice.

## Connection Diagram

Pin Assignment for SSOP and TSSOP

| OEAB - 1 | 56 | - $\overline{0 \varepsilon B A_{1}}$ |
| :---: | :---: | :---: |
| $\mathrm{CPAB}_{1}-2$ | 55 | - CPEA ${ }_{1}$ |
| SAB ${ }_{1}-3$ | 54 | - SEA |
| GND - 4 | 53 | -GND |
| $A_{0}=5$ | 52 | $-8_{0}$ |
| $A_{1}-6$ | 51 | $-\theta_{1}$ |
| $v_{C C}-7$ | 50 | $-v_{c c}$ |
| $\mathrm{A}_{2}-8$ | 49 | $-\mathrm{B}_{2}$ |
| $\mathrm{A}_{3}=9$ | 48 | $-\mathrm{B}_{3}$ |
| $A_{4}-10$ | 47 | $-\mathrm{B}_{4}$ |
| GND - 11 | 46 | -GND |
| $A_{5}-12$ | 45 | $-\mathrm{B}_{5}$ |
| $A_{6}-13$ | 44 | $-B_{6}$ |
| $A_{7}-14$ | 43 | $-\mathrm{B}_{7}$ |
| $A_{8}=15$ | 42 | $-\mathrm{B}_{8}$ |
| $A_{9}-16$ | 41 | $-\mathrm{B}_{9}$ |
| $A_{10}-17$ | 40 | - $\mathrm{B}_{10}$ |
| GND - 18 | 39 | - GND |
| $\mathrm{A}_{11}=19$ | 38 | $-B_{11}$ |
| $A_{12}-20$ | 37 | $-\mathrm{B}_{12}$ |
| $\mathrm{A}_{13}-21$ | 36 | $-\mathrm{B}_{13}$ |
| $v_{C C}=22$ | 35 | $-v_{c c}$ |
| $\mathrm{A}_{14}-23$ | 34 | $-B_{14}$ |
| $A_{15}-24$ | 33 | $-8_{15}$ |
| GND -25 | 32 | -GND |
| $\mathrm{SAB}_{2}-26$ | 31 | $-\mathrm{SBA}_{2}$ |
| $\mathrm{CPAB}_{2}-27$ | 30 | $-\mathrm{CPBA}_{2}$ |
| $\mathrm{OEAB}_{2}-28$ | 29 | - OEBA $^{\text {a }}$ |

## Functional Description

In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both. The select $\left(\mathrm{SAB}_{n}, \mathrm{SBA}_{n}\right)$ controls can multiplex stored and real-time.
The examples in Figure 1 demonstrate the four fundamental bus-management functions that can be performed with the 74LCX16652.

Data on the A or B data bus, or both can be stored in the internal D flip-flop by LOW to HIGH transitions at the ap-
propriate Clock Inputs ( $\mathrm{CPAB}_{n}, \mathrm{CPBA}_{n}$ ) regardless of the Select or Output Enable Inputs. When SAB and SBA are in the real time transfer mode, it is also possible to store data without using the internal $D$ flip-flops by simultaneously enabling $O E A B_{n}$ and $\overline{O E B A}_{n}$. In this configuration each Output reinforces its Input. Thus when all other data sources to the two sets of bus lines are in a HIGH impedance state, each set of bus lines will remain at its last state.


FIGURE 1

## Function Table (Note)

| Inputs |  |  |  |  |  | Inputs/Outputs |  | Operating Mode |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{OEAB}_{1}$ | $\overline{\mathrm{OEBA}}_{1}$ | $\mathrm{CPAB}_{1}$ | CPBA ${ }_{1}$ | $\mathrm{SAB}_{1}$ | $\mathrm{SBA}_{1}$ | $A_{0}$ thru $A_{7}$ | $B_{0}$ thru $B_{7}$ |  |
| L | H | Hor L | HorL | X | X | Input | Input | Isolation |
| L | H | $\checkmark$ | $\bigcirc$ | X | X |  |  | Store A and B Data |
| X | H | $\Omega$ | HorL | X | X | Input | Not Specified | State A, Hold B |
| H | H | $\Gamma$ | $\Gamma$ | X | X | Input | Output | Store $A$ in Both Registers |
| L | X | HorL | $\Omega$ | X | X | Not Specified | Input | Hold A, Store B |
| L | L | $\Gamma$ | $\sim$ | X | X | Output | Input | Store B in Both Registers |
| L | L | X | X | X | L | Output | Input | Real-Time B Data to A Bus |
| L | L | X | H or L | X | H |  |  | Store B Data to A Bus |
| H | H | X | X | L | X | Input | Output | Real-Time A Data to B Bus |
| H | H | Hor ${ }^{\text {L }}$ | X | H | X |  |  | Stored A Data to B Bus |
| H | L | HorL | HorL | H | H | Output | Output | Stored A Data to B Bus and Stored B Data to A Bus |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$工=$ LOW to HIGH Clock Transition
Note: The data output functions may be enabled or disabled by various signals at OEAB or OEBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW to HIGH transition on the clock inputs. This also applies to data I/O (A and B: 8-15) and \#2 control pins.

## Logic Diagram



TL/F/12005-7
Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ ) | -0.5 V to +7.0 V |
| :---: | :---: |
| DC Input Voltage ( $\mathrm{V}_{1}$ ) | -0.5 V to +7.0 V |
| Output Voltage ( $\mathrm{V}_{\mathrm{O}}$ ) |  |
| Outputs Tri-Stated | -0.5 V to +7.0 V |
| Outputs Active (Note 2) -0.5 | -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| DC Input Diode Current ( $\mathrm{I}_{\mathrm{K}}$ ) $\mathrm{V}_{\mathrm{I}}<0$ | - 50 mA |
| DC Output Diode Current (lok) |  |
| $\mathrm{V}_{\mathrm{O}}<0$ | -50 mA |
| $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ | $+50 \mathrm{~mA}$ |
| DC Output Source/Sink Current ( $\mathrm{lOH}^{\prime} / \mathrm{lOL}$ | - $\pm 50 \mathrm{~mA}$ |
| DC VCC or Ground Current per Supply Pin (ICC or IGND) | $\pm 100 \mathrm{~mA}$ |
| Storage Temperature Range (TSTG) | $-65^{\circ} \mathrm{C}$ to +150 |

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operation Conditions" table will define the conditions for actual device operation.
Note 2: IO Absolute Maximum Rating must be observed.

## Recommended Operating

 Conditions| Supply Voltage |  |
| :--- | ---: |
| Operating | 2.0 V to 3.6 V |
| Data Retention Only | 1.5 V to 3.6 V |
| Input Voltage $\left(\mathrm{V}_{\mathrm{l}}\right)$ | 0 V to 5.5 V |
| Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ |  |
| Output in Active State | 0 V to VCC |
| Output in "OFF" State | 0 V to 5.5 V |
| Output Current loH $/ \mathrm{loL}_{\mathrm{OL}}$ |  |
| $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | $\pm 24 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.0 V | $\pm 12 \mathrm{~mA}$ |
| Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Minimum Input Edge Ratge $(\Delta \mathrm{t} / \Delta \mathrm{V})$ |  |
| $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | $10 \mathrm{~ns} / \mathrm{V}$ |

DC Electrical Characteristics

| Symbol | Parameter | $V_{C C}$ <br> (V) | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2.7-3.6 | 2.0 |  | V | $\begin{aligned} & V_{\text {OUT }} \leq 0.1 \mathrm{~V} \text { or } \\ & \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage | 2.7-3.6 |  | 0.8 |  |  |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{gathered} 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.2 \\ 2.4 \\ 2.2 \\ \hline \end{gathered}$ |  | V | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{gathered} 2.7-3.6 \\ 2.7 \\ 3.0 \\ \hline \end{gathered}$ |  | $\begin{gathered} 0.2 \\ 0.4 \\ 0.55 \\ \hline \end{gathered}$ | V | $\begin{aligned} \mathrm{I}_{\mathrm{OL}} & =100 \mu \mathrm{~A} \\ \mathrm{IOL} & =12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}} & =24 \mathrm{~mA} \end{aligned}$ |
| 1 | Input Leakage Current | 2.7-3.6 |  | $\pm 5.0$ | $\mu \mathrm{A}$ | $0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$ |
| loz | TRI-STATE I/O Leakage | 2.7-3.6 |  | $\pm 5.0$ | $\mu \mathrm{A}$ | $\begin{aligned} & 0 \leq V_{O} \leq 5.5 \mathrm{~V} \\ & V_{\mathrm{I}}=\mathrm{VIH}_{\mathrm{IH}} \text { or } V_{\mathrm{IL}} \end{aligned}$ |
| loff | Power Off Leakage Current | 0 |  | 100 | $\mu \mathrm{A}$ | $\mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ |
| ICC | Quiescent Supply Current | 2.7-3.6 |  | 20 | $\mu \mathrm{A}$ | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |
|  |  |  |  | $\pm 20$ | $\mu \mathrm{A}$ | $3.6 \leq\left(V_{1}, V_{0}\right) \leq 5.5 \mathrm{~V}$ |
| $\Delta l_{\text {CC }}$ | Increase in ICC per Input | 2.7-3.6 |  | 500 | $\mu \mathrm{A}$ | $\mathrm{V}_{1 \mathrm{H}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ |

AC Electrical Characteristics: See Section 2 for Test Methodology

| Symbol | Parameter | VCC <br> (V) | $\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ C_{L}=50 \mathrm{pF} \end{gathered}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max (Note 2) |  |
| $t_{\text {PHL }}$ <br> $t_{\text {PLH }}$ | Propagation Delay Bus to Bus | $\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$ | $\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 6.6 \\ & 6.0 \end{aligned}$ | ns |
| $t_{\text {PHL }}$ <br> tplH | Propagation Delay Clock to Bus | $\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$ | $\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 8.3 \\ & 7.5 \end{aligned}$ | ns |
| $t_{\text {PHL }}$ <br> $t_{\text {PLH }}$ | Propagation Delay SAB or SBA to $A_{n}$ or $B_{n}$ | $\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$ | $\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 8.3 \\ & 7.5 \\ & \hline \end{aligned}$ | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$ | Output Enable Time $\overline{O E B A}$ to $A_{n}$ or $B_{n}$ | $\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$ | $\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} 8.3 \\ 7.5 \\ \hline \end{array}$ | ns |
| $\begin{aligned} & \text { tphZ } \\ & t_{\text {tpLZ }} \\ & \hline \end{aligned}$ | Output Disable Time $\overline{O E B A}$ to $A_{n}$ or $B_{n}$ | $\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$ | $\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 8.3 \\ & 7.5 \\ & \hline \end{aligned}$ | ns |
| $t_{\text {PZH }}$ | Output Enable Time OEAB to $A_{n}$ or $B_{n}$ | $\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$ | $\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 8.3 \\ & 7.5 \end{aligned}$ | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & t_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$ | Output Disable Time OEAB to $A_{n}$ or $B_{n}$ | $\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$ | $\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 8.3 \\ & 7.5 \\ & \hline \end{aligned}$ | ns |
| $\mathrm{t}_{\text {s }}$ | Setup Time | $\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$ | $\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$ |  | ns |
| ${ }_{\text {H }}$ | Hold Time | $\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$ | $\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$ |  | ns |
| tw | Pulse Width | $\begin{gathered} 2.7 \\ 3.0-3.6 \end{gathered}$ | $\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$ |  | ns |
| toshl, <br> tosth | Output to Output Skew (Note 1) | 3.0 |  | 1.0 | ns |

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (LOSHJ or LOW to HIGH (LOSLH). Parameter guaranteed by design.
Note 2: The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.

## Dynamic Switching Characteristics: See Section 2 for Test Methodology

| Symbol | Parameter | $V_{C C}$ <br> $(V)$ | Typical | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $V_{\mathrm{OLP}}$ | Quiet Output Dynamic Peak $\mathrm{V}_{\mathrm{OL}}$ | 3.3 | 0.8 | V | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$ |
| $\mathrm{~V}_{\mathrm{OLV}}$ | Quiet Output Dynamic Valley $\mathrm{V}_{\mathrm{OL}}$ | 3.3 | 0.8 | V | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$ |

## Capacitance

| Symbol | Parameter | Typical | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{C}_{I N}$ | Input Capacitance | 7 | pF | $V_{C C}=O p e n$ <br> $V_{1}=0 \mathrm{~V}$ or $V_{C C}$ |
| $\mathrm{C}_{\mathrm{I} / \mathrm{O}}$ | Input/Output Capacitance | 8 | pF | $V_{C C}=3.3 \mathrm{~V}$ <br> $V_{1}=0 \mathrm{~V}$ or $V_{C C}$ |
| $\mathrm{C}_{\mathrm{PD}}$ | Power Dissipation Capacitance | 32 | pF | $V_{C C}=3.3 \mathrm{~V}$ <br> $V_{1}=0 \mathrm{~V}$ or $V_{C C}$ <br> $\mathrm{~F}=10 \mathrm{MHz}$ |

