

Pin Descriptions

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
LE	Latch Enable Input
$\overline{\mathrm{OE}}$	3-STATE Output Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	3-STATE Latch Outputs

Functional Description

The LCX573 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a

Truth Table

Inputs			Outputs
$\overline{\mathbf{O E}}$	LE	D	$\mathbf{O}_{\boldsymbol{n}}$
L	H	H	H
L	H	L	L
L	L	X	O_{0}
H	X	X	Z

H = HIGH Voltage
L = LOW Voltage
$\mathrm{Z}=$ High Impedance
$\mathrm{X}=$ Immaterial
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW transition of Latch Enable
setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable ($\overline{\mathrm{OE}})$ input. When OE is LOW, the buffers are enabled. When OE is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Value	Conditions	Units
V_{CC}	Supply Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	Output in High or Low State (Note 2)	V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current	-50	$\mathrm{~V}_{1}<\mathrm{GND}$	mA
I_{OK}	DC Output Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	
		+50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
I_{O}	DC Output Source/Sink Current	± 50		mA
I_{CC}	DC Supply Current per Supply Pin	± 100		mA
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current per Ground Pin	± 100		mA
$\mathrm{~T}_{\text {STG }}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 3)

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	2.0	3.6	V
		1.5	3.6	
V_{1}	Input Voltage	0	5.5	V
V_{0}	Output Voltage	0	V_{CC}	V
		0	5.5	
$\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$	Output Current $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$		± 24	mA
	$V_{C C}=2.7 \mathrm{~V}$		± 12	
T_{A}	Free-Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	ns/V

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating
Conditions" table will define the conditions for actual device operation.
Note 2: I_{0} Absolute Maximum Rating must be observed
Note 3: Unused (inputs or I/O's) must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
$\mathrm{V}_{1 \mathrm{H}}$	HIGH Level Input Voltage		2.7-3.6	2.0		V
V_{IL}	LOW Level Input Voltage		2.7-3.6		0.8	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.7-3.6	$\mathrm{V}_{\text {CC }}-0.2$		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		V
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		V
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{I}_{\text {OL }}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	V
		$\mathrm{I}_{\text {OL }}=12 \mathrm{~mA}$	2.7		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	V
1	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
l_{Oz}	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
IofF	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
I_{Cc}	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2.7-3.6		10	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	Increase in I_{CC} per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$				Units
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	1.5	8.0	1.5	9.0	ns
$\mathrm{t}_{\text {PLH }}$	D_{n} to O_{n}	1.5	8.0	1.5	9.0	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	1.5	8.5	1.5	9.5	ns
$\mathrm{t}_{\text {PLH }}$	LE to O_{n}	1.5	8.5	1.5	9.5	
$\mathrm{t}_{\text {PZL }}$	Output Enable Time	1.5	8.5	1.5	9.5	ns
$\mathrm{t}_{\mathrm{PZH}}$		1.5	8.5	1.5	9.5	
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	6.5	1.5	7.0	ns
$\mathrm{t}_{\mathrm{PHZ}}$			6.5	1.5	7.0	
t_{s}	Setup Time, D_{n} to LE	2.5		2.5		ns
t_{H}	Hold Time, D_{n} to LE	1.5		1.5		ns
t_{W}	LE Pulse Width	3.3		3.3		ns
toshl	Output to Output Skew (Note 4)		1.0			ns
			1.0			

Note 4: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (tOSHL) or LOW to HIGH (tOSLH).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	v_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	-0.8	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=O p e n, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	25	pF

\square

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead (0.300 " Wide) Molded Small Outline Package, JEDEC Package Number M20B

20-Lead Molded Small Outline Package, EIAJ (SJ)
Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Molded Shrink Small Outline Package, EIAJ, Type II Package Number MSA20
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

