National Semiconductor

74LCX574

Octal D-Type Flip-Flop with 5V Tolerant Inputs and Outputs

General Description

The 'LCX574 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ($\overline{\mathrm{OE}})$. The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

The 'LCX574 is functionally identical to the LCX374 except for the pinouts.
The 'LCX574 is designed for low voltage (3.3V) V V_{C} applications with capability of interfacing to a 5 V signal environment. The 'LCX574 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- 7.5 ns tpD max, $10 \mu \mathrm{~A}$ ICCQ max
- Power down high impedance inputs and outputs
- 2.0V-3.6V V_{CC} supply operation
- $\pm 24 \mathrm{~mA}$ output drive
- Implements patented Quiet SeriesTM noise/EMI reduction circuitry
- Functionally compatible with 74 series 574
- Latch-up performance exceeds 500 mA
- ESD performance:

Human body model > 2000V
Machine model > 200V

Logic Symbols

IEEE/IEC

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$C P$	Clock Pulse Input
$\overline{O E}$	TRI-STATE ${ }^{\circledR}$ Output
	Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	TRI-STATE Outputs

Connection Diagrams
Pin Assignment for SOIC, SSOP and TSSOP

TL/F/12406-2

	SOIC JEDEC	SOIC EIAJ	SSOP Type II	TSSOP JEDEC
Order Number	74LCX574WM 74LCX574WMX	74LCX574SJ 74LCX574SJX	74LCX574MSA 74LCX574MSAX	74LCX574MTC 74LCX574MTCX
See NS Package Number	M20A	M20D	MSA20	MTC20

Functional Description

The 'LCX574 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}}$) LOW, the contents of the eight flipflops are available at the outputs. When $\overline{O E}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

Function Table

Inputs			Internal	Outputs	Function
$\overline{O E}$	CP	D	Q	O_{N}	
H	H	L	NC	Z	Hold
H	H	H	NC	Z	Hold
H	\checkmark	L	L	Z	Load
H	Ω	H	H	Z	Load
L	Γ	L	L	L	Data Available
L	\sim	H	H	H	Data Available
L	H	L	NC	NC	No Change in Data
L	H	H	NC	NC	No Change in Data

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance
$\widehat{\sim}=$ LOW-to-HIGH Transition
NC = No Change

Logic Diagram

TL/F/12406-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Symbol	Parameter	Value	Conditions	Units
$V_{C C}$	Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{0}	DC Output Voltage	-0.5 to +7.0	Output in TRI-STATE	V
		-0.5 to $V_{C C}+0.5$	Output in High or Low State (Note 2)	V
lik	DC Input Diode Current	-50	$V_{1}<$ GND	mA
Iok	DC Output Diode Current	$\begin{array}{r} -50 \\ +50 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}<\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \end{aligned}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current per Supply Pin	± 100		mA
IGND	DC Ground Current per Ground Pin	± 100		mA
TSTG	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating
Conditions" table will define the conditions for actual device operation.
Note 2: Io Absolute Maximum Rating must be observed.
Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
$V_{\text {cc }}$	Supply Voltage $\begin{array}{r}\text { Operating } \\ \text { Data Retention }\end{array}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0	5.5	V
V_{0}	Output Voltage HIGH or LOW State TRI-STATE	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
$\mathrm{lOH}^{\prime} \mathrm{lOL}$	Output Current $\quad$$V_{C C}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\begin{aligned} & \pm 24 \\ & \pm 12 \end{aligned}$	mA
(T_{A})	Free-Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	ns/V

DC Electrical Characteristics

Symbol	Parameter	Conditions	$V_{C C}$ (V)	$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage		2.7-3.6	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		2.7-3.6		0.8	V
VOH	HIGH Level Output Voltage	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{IOH}=-12 \mathrm{~mA}$	2.7	2.2		V
		$\mathrm{IOH}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		V
		$\mathrm{IOH}=-24 \mathrm{~mA}$	3.0	2.2		V
VOL	LOW Level Output Voltage	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	V
		$\mathrm{IOL}=12 \mathrm{~mA}$	2.7		0.4	V
		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0		0.4	V
		$\mathrm{IOL}=24 \mathrm{~mA}$	3.0		0.55	V
11	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
loz	TRI-STATE Output Leakage	$\begin{aligned} & 0 \leq V_{O} \leq 5.5 V \\ & V_{1}=V_{I H} \text { or } V_{I L} \end{aligned}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	V_{1} or $V_{\text {O }}=5.5 \mathrm{~V}$	0		100	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	$V_{1}=V_{C C}$ or GND	2.7-3.6		10	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	2.7-3.6		± 10	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	Increase in Icc per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				Units
		$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$		
		Min	Max	Min	Max	
$f_{\text {MAX }}$	Maximum Clock Frequency	150				MHz
$t_{\text {PHL }}$ tplH	Propagation Delay CP to O_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
tPZL t_{PZH}	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & t_{\mathrm{PLZ}} \\ & t_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$	ns
ts	Setup Time	2.5		2.5		ns
t_{H}	Hold Time	1.5		1.5		ns
tw	Pulse Width	3.3		3.3		ns
toshl tosLh	Output to Output Skew (Note 1)		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			ns

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (tOSHJ or LOW to HIGH (LOSLH).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$V_{c c}$ (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
				Typical	
Volp	Quiet Output Dynamic Peak VOL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V
Volv	Quiet Output Dynamic Valley V ${ }_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	P	8
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, F=10 \mathrm{MHz}$	25	pF

74LCX574 Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

