DESCRIPTION - The'298 is a quad 2-port register. It is the logical equivalent of a quad 2-input multiplexer followed by a quad 4-bit edge-triggered register. A Common Select input selects between two 4-bit input ports (data sources). The selected data is transferred to the output register synchronous with the HIGH-to-LOW transition of the Clock input.

- SELECT FROM TWO DATA SOURCES
- FULLY EDGE-TRIGGERED OPERATION
- TYPICAL POWER DISSIPATION OF 65 mW (LS298)
ORDERING CODE: See Section 9

PKGS	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
	OUT	VCC $=+5.0 \mathrm{~V} \pm 5 \%$, $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	VCC $=+5.0 \mathrm{~V}+10 \%$, $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Plastic DIP (P)	A	$74298 \mathrm{PC}, 74 \mathrm{LS} 298 \mathrm{PC}$		9 C
Ceramic DIP (D)	A	$74298 \mathrm{DC}, 74 \mathrm{LS} 298 \mathrm{DC}$	$54298 \mathrm{DM}, 54 \mathrm{LS} 298 \mathrm{DM}$	6 B
Flatpak (F)	A	$74298 \mathrm{FC}, 74 \mathrm{LS} 298 \mathrm{FC}$	$54298 \mathrm{FM}, 54 \mathrm{LS} 298 \mathrm{FM}$	4 L

LOGIC SYMBOL

$$
V_{c c}=\operatorname{Pin} 16
$$

$$
\text { GND }=\operatorname{Pin} 8
$$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW
S	Common Select Input	1.0/1.0	0.5/0.25
$\overline{C P}$	Clock Pulse Input (Active Falling Edge)	1.0/1.0	0.5/0.25
loa - lod	Source 0 Data Inputs	1.0/1.0	0.5/0.25
$1 \mathrm{l}_{\mathrm{a}}$ - $1 \mathrm{l}_{\text {d }}$	Source 1 Data Inputs	1.01/.0	0.5/0.25
$\mathrm{Q}_{\mathrm{a}}-\mathrm{Q}_{\mathrm{d}}$	Flip-flop Outputs	20/10	$\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$

FUNCTIONAL DESCRIPTION - This device is a high speed quad 2-port register. It selects four bits of data from two sources (ports) under the control of a Common Select input (S). The selected data is transferred to the 4-bit output register synchronous with the HIGH-to-LOW transition of the Clock input ($\overline{\mathrm{CP}}$). The 4-bit output register is fully edge-triggered. The Data inputs ($\mathrm{Inx}_{\mathrm{n}}$) and Select input (S) need be stable only one setup time prior to the HIGH-to-LOW transition of the clock for predicatable operation.

TRUTH TABLE

INPUTS		OUTPUT	
S	$l_{0 x}$	l_{x}	Q_{x}
I_{1}	I	X	L
I	h	X	H
h	X	I	L
h	X	h	H

I = LOW Voltage Level one setup time prior to the HIGH-to-LOW clock transition.
$h=$ HIGH Voltage Level one setup time prior to the HIGH-to-LOW clock transition.
$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	54/74	54/74LS	UNITS	CONDITIONS
		Min Max			
Icc	Power Supply Current	65	21	mA	$\begin{aligned} & \text { Ion, Inn, } S=G n d \\ & C P=-L, V C C=\operatorname{Max} \end{aligned}$

AC CHARACTERISTICS: $\mathrm{VCC}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	54/74	54/74LS	UNITS	CONDITIONS
		$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$	$C_{L}=15 \mathrm{pF}$		
		Min Max	Min Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\overline{\mathrm{CP}}$ to Q_{n}	$\begin{aligned} & 27 \\ & 32 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	ns	Figs. 3-1, 3-9

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS
		Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW S to $\overline{C P}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		ns	Fig. 3-7
$\begin{aligned} & \hline \operatorname{tn}_{n}(H) \\ & \operatorname{th}(L) \end{aligned}$	Hold Time HIGH or LOW S to $\overline{C P}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup Time HIGH or LOW lox or $\mathrm{I}_{1 \times}$ to $\overline{\mathrm{CP}}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$		ns	
$\begin{aligned} & \operatorname{th}_{n}(H) \\ & \operatorname{th}^{(L)} \end{aligned}$	Hold Time HIGH or LOW 10x or $\mathrm{I}_{1 \times}$ to $\overline{\mathrm{CP}}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	
$t_{w}(H)$	$\overline{\text { CP }}$ Pulse Width HIGH or LOW	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$		ns	Fig. 3-9

