	$8-B$	54LS/74L SERIAL/PARAL (With Sign	322 EL REGISTER end)			RAM
DESCRIP serial or output. P pin coun synchron serial en Master R The '322 vides the ORDERIN	ION rallel l allel d State us mo , shift et ($\overline{M R}$ specifi ex COD	The ' 322 is an 8 -bit shift oading and with 3-state par ata inputs and parallel outp hanges are initiated by the des of operation are possi right with sign extend and input overrides clocked cally designed for operatio end function required for E: See Section 9	egister with provision for ei allel outputs plus a bi-state se uts are multiplexed to minim rising edge of the clock. be: hold (store), shift right parallel load. An asynchron peration and clears the regis with the ' 384 Multiplier and the 384.			20 v cc 19s $18 \overline{\mathrm{SE}}$ ${ }^{17} \mathrm{D}_{1}$ ${ }^{16}$!/ $/{ }^{6}$ $151 / 0_{4}$ $14{ }^{1 / 0_{2}}$ $131 / 0_{0}$
PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	MILITARY GRADE $\mathrm{VCC}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	PKG TYPE	$\begin{array}{r} \overline{\mathrm{MR}} 9 \\ \mathrm{GND} 10 \end{array}$	(12 Q_{0}
Plastic DIP (P)	A	74LS322PC	- ${ }^{\circ}$	92		
Ceramic DIP (D)	A	74LS322DC	54LS322DM	4E		
Flatpak (F)	A	74LS322FC	54LS322FM	4F		

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74LS (U.L.) HIGH/LOW
$\overline{\overline{R E}}$	Register Enable Input (Active LOW)	$0.5 / 0.23$
S / \bar{P}	Serial (HIGH) or Parallel (LOW) Mode Control Input	$0.5 / 0.23$
$\overline{S E}$	Sign Extend Input (Active LOW)	$1.5 / 0.68$
S	Serial Data Select Input	$1.0 / 0.45$
$\mathrm{D}_{0}, \mathrm{D}_{1}$	Serial Data Inputs	$0.5 / 0.23$
CP	Clock Pulse Input (Active Rising Edge)	$0.5 / 0.23$
$\overline{M R}$	Asynchronous Master Reset Input (Active LOW)	$0.5 / 0.23$
$\overline{O E}$	3-State Output Enable Input (Active LOW)	$0.5 / 0.23$
Q_{0}	Bi-State Serial Output	$11 / 5.0$
	(2.5)	
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Multiplexed Parallel Inputs or	$0.5 / 0.23$
	3-State Parallel Outputs	$65 / 5.0$
		$(25) /(2.5)$

FUNCTIONAL DESCRIPTION - The '322 contains eight D-type edge triggered flip-flops and the interstage gating required to perform right shift and the intrastage gating necessary for hold and synchronous parallel load operations. A LOW signal on $\overline{\mathrm{RE}}$ enables shifting or parallel loading, while a HIGH signal enables the hold mode. A HIGH signal on S/ \bar{P} enables shift right, while a LOW signal disables the 3 -state output buffers and enables parallel loading. In the shift right mode a HIGH signal on $\overline{S E}$ enables serial entry from either D_{0} or D_{1}, as determined by the S input. A LOW signal on $\overline{S E}$ enables shift right but Q_{7} reloads its contents, thus performing the sign extend function required for the ' 384 Twos Complement Multiplier. A HIGH signal on $\overline{\mathrm{OE}}$ disables the $3-$ state output buffers, regardless of the other control inputs. In this condition the shifting and loading operations can still be performed.

LOGIC SYMBOL

LOGIC DIAGRAM

MODE TABLE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{MODE} \& \multicolumn{7}{|c|}{INPUTS} \& \multicolumn{8}{|c|}{OUTPUTS} \& \\
\hline \& \(\overline{\mathrm{MR}}\) \& \(\overline{\mathrm{RE}}\) \& \(s / \bar{P}\) \& \(\overline{S E}\) \& S \& \(\overline{\mathrm{OE}}\) ' \& CP \& 1/07 \& 1/O6 \& \(1 / \mathrm{O}_{5}\) \& I/O4 \& I/O3 \& \(1 / \mathrm{O}_{2}\) \& I/O1 \& I/O0 \& Q0 \\
\hline Clear \& \[
\underset{\mathrm{L}}{\mathrm{~L}}
\] \& \[
\begin{aligned}
\& \mathrm{X} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{X} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{X} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& x \\
\& x
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{L} \\
\& \mathrm{H}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{X} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\mathrm{L}
\] \& \[
\begin{aligned}
\& \mathrm{L} \\
\& \mathrm{Z}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{L} \\
\& \mathrm{Z}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{L} \\
\& \mathrm{Z}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{L} \\
\& \mathrm{Z}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{L} \\
\& \mathrm{Z}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{L} \\
\& \mathrm{Z}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{L} \\
\& \mathrm{Z}
\end{aligned}
\] \& L \\
\hline \begin{tabular}{l}
Parallel \\
Load
\end{tabular} \& H \& L \& L \& X \& X \& X \& 」 \& 17 \& 16 \& 15 \& 14 \& 13 \& \(\mathrm{I}_{2}\) \& 11 \& 10 \& 10 \\
\hline Shift Right \& \[
\begin{aligned}
\& \mathrm{H} \\
\& \mathrm{H}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{L} \\
\& \mathrm{~L}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{H} \\
\& \mathrm{H}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{H} \\
\& \mathrm{H}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{L} \\
\& \mathrm{H}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{L} \\
\& \mathrm{~L}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { ک } \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{D}_{0} \\
\& \mathrm{D}_{1}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{O}_{7} \\
\& \mathrm{O}_{7}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{O}_{6} \\
\& \mathrm{O}_{6}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{O}_{5} \\
\& \mathrm{O}_{5}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{O}_{4} \\
\& \mathrm{O}_{4}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{O}_{3} \\
\& \mathrm{O}_{3}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{O}_{2} \\
\& \mathrm{O}_{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{O}_{1} \\
\& \mathrm{O}_{1}
\end{aligned}
\] \& O

O_{1}

\hline Sign Extend \& H \& L \& H \& L \& X \& L \& 」 \& O_{7} \& O7 \& O6 \& O5 \& O_{4} \& O_{3} \& O_{2} \& O_{1} \& 01

\hline Hold \& H \& H \& X \& x \& X \& L \& ऽ \& NC

\hline
\end{tabular}

'When the $\overline{O E}$ input is HIGH. all I/On terminals are at the high-impedance state; sequential operation or clearing of the register is not affected.

1. $1_{7}-I_{0}=$ The level of the steady-state input at the respective I / O terminal is loaded into the flip-flop while the flip-flop outputs (except Q_{0}) are isolated from the I/O terminal.
2. $\mathrm{D}_{0}, \mathrm{D}_{1}=$ The level of the steady-state inputs to the serial multiplexer input.
3. $\mathrm{O}_{7}-\mathrm{O}_{0}=$ The level of the respective Q_{n} flip-flop prior to the last Clock LOW-to-HIGH transition.
$N C=$ No Change $\quad Z=$ High-Impedance Output State $\quad H=H I G H$ Voltage Level $L=$ LOW Voltage Level

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	54/74LS		UNITS

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER			UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$			
		Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	35		MHz	Figs. 3-1, 3-8
tPLH tPHL	Propagation Delay CP to $1 / O_{n}$		$\begin{aligned} & 23 \\ & 25 \end{aligned}$	ns	
$\widehat{\text { tPLH }}$ tPHL	Propagation Delay CP to Q_{0}		$\begin{aligned} & 25 \\ & 29 \end{aligned}$	ns	Figs. 3-1, 3-16
tPHL	Propagation Delay $\overline{M R}$ to I / O_{n}		33	ns	
tphL	Propagation Delay $\overline{M R}$ to Q_{0}		30	ns	
$\begin{array}{\|l\|l\|l\|} \hline \text { tpzH } \\ \text { tpzL } \end{array}$	Output Enable Time $\overline{O E}$ to I / O_{n}		$\begin{aligned} & 18 \\ & 23 \\ & \hline \end{aligned}$	ns	Figs. 3-3, 3-11, 3-12 $R_{\mathrm{L}}=2 \mathrm{k} \Omega$
$\begin{aligned} & \mathrm{t} \text { tphz } \\ & \text { tpLz } \end{aligned}$	Output Disable Time $\overline{O E}$ to I / O_{n}		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$
	Output Enable Time S / \bar{P} to I / O_{n}		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$
$\begin{array}{\|l\|l\|} \mathrm{t} \text { tphz } \\ \text { tPLZ } \end{array}$	Output Disable Time $\mathrm{S} / \overline{\mathrm{P}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$		$\begin{aligned} & 23 \\ & 23 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}} \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/74LS		UNITS	CONDITIONS
		Min	Max		
$\begin{aligned} & t_{s}(H) \\ & \text { ts }_{s}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW $\overline{R E}$ to CP	$\begin{aligned} & 24 \\ & 24 \end{aligned}$		ns	Fig. 3-6
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$	Hold Time HIGH or LOW $\overline{R E}$ to CP	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$		ns	
$\begin{aligned} & \text { ts (H) } \\ & \text { ts (L) } \end{aligned}$	Setup Time HIGH or LOW $\mathrm{D}_{0}, \mathrm{D}_{1}$ or $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		ns	
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{th}(L) \end{aligned}$	Hold Time HIGH or LOW D_{0}, D_{1} or I / O_{n} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
$\begin{aligned} & \text { ts (H) } \\ & \text { ts (L) } \end{aligned}$	Setup Time HIGH or LOW SE to CP	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns	
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$	Hold Time HIGH or LOW SE to CP	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$		ns	
$\begin{aligned} & \hline \mathrm{ts}_{s}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW S / \bar{P} to CP	$\begin{aligned} & 24 \\ & 24 \end{aligned}$		ns	
$\begin{aligned} & \text { ts }^{(H)} \\ & \text { ts }_{s}(L) \end{aligned}$	Setup Time HIGH or LOW S to CP	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns	
$\begin{aligned} & \overline{\operatorname{tn}(H)} \\ & \operatorname{th}(L) \end{aligned}$	Hold Time HIGH or LOW S or S / \bar{P} to $C P$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
${ }_{\text {tw }}(H)$	CP Pulse Width HIGH	15		ns	Fig. 3-8
Iw (L)	$\overline{M R}$ Pulse Width LOW	15		ns	Fig. 3-16
trec	Recovery Time $\overline{M R}$ to $C P$	15		ns	

