CONNECTION DIAGRAM PINOUT A

54LS/74LS390 DUAL DECADE COUNTER

DESCRIPTION - The ' 390 contains a pair of high speed 4 -stage ripple counters. Each half of the '390 is partitioned into a divide-by-two section and a divide-by-five section, with a separate clock input for each section. The two sections can be connected to count in the 8421 BCD code or they can count in a bi-quinary sequence to provide a square wave (50% duty cycle) at the final output.

Each half of the ' 390 contains $\mathbf{a} \div 5$ section that is independent except for the common MR function. The $\div 5$ section operates in 421 binary sequence, as shown in the $\div 5$ Truth Table, with the third stage output exhibiting a 20% duty cycle when the input frequency is constant. To obtain a $\div 10$ function having a 50% duty cycle output, connect the input signal to $\overline{\mathrm{CP}}_{1}$ and connect the Q_{3} output to the $\overline{\mathrm{CP}}_{0}$ input; the Q_{0} output provides the desired 50% duty cycle output. If the input frequency is connected to $\overline{\mathrm{C}} \bar{P}_{0}$ and the Q_{0} output is connected to $\overline{C P}_{1}$, a decade divider operating in the 8421 BCD code is obtained, as shown in the BCD Truth Table. Since the flipflops change state asynchronously, logic signals derived from combinations of '390 outputs are also subject to decoding spikes. A HIGH signal on MR forces all outputs LOW and prevents counting.

ORDERING CODE: See Section 9

PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE	MILITARY GRADE	PKG TYPE
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	
Plastic DIP (P)	A	74LS390PC		9B
Ceramic DIP (D)	A	74LS390DC	54LS390DM	6B
Flatpak (F)	A	74LS390FC	54LS390FM	4L

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L definitions

PIN NAMES	DESCRIPTION	54/74LS (U.L.) HIGH/LOW
$\overline{\overline{C P}}_{0}$	$\div 2$ Section Clock Input (Active Falling Edge)	$1.0 / 1.5$
$\overline{C P}_{1}$	$\div 5$ Section Clock Input (Active Falling Edge)	$2.0 / 2.0$
$M R$	Asynchronous Master Reset Input (Active HIGH)	$0.5 / 0.25$
$Q_{0}-Q_{3}$	Flip-flop Outputs*	$10 / 5.0$
		(2.5)

- The a_{0} Output is guaranteed to drive the full rated fan-out plus the $\overline{\mathrm{CP}}$, input.

LOGIC DIAGRAM (one half shown)

BCD TRUTH TABLE
(Input on $\overline{\mathbf{C P}}_{0} ; \mathbf{Q}_{0}$ to $\overline{\mathbf{C P}}_{1}$)

COUNT	OUTPUTS			
	Q3	Q2	Q1	Q0
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

5 TRUTH TABLE
(Input on $\overline{\mathbf{C P}}_{1}$)

COUNT	OUTPUTS		
	Q $_{3}$	Q $_{2}$	Q $_{1}$
0	L	L	L
1	L	L	H
2	L	H	L
3	L	H	H
4	H	L	L

H = HIGH Voltage Level
L = LOW Voltage Level

H = HIGH Voltage Level $L=$ LOW Voltage Level

STATE DIAGRAM

SYMBOL	PARAMETER				UNITS	CONDITIONS
			Min	Max		
liH	Input HIGH Current, $\overline{\mathrm{CP}}_{0}, \overline{\mathrm{CP}}_{1}$			0.1	mA	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
Icc	Power Supply Current	'390		30	mA	$\mathrm{VCC}=\mathrm{Max}$

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER			UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$			
		Min	Max		
$f_{\text {max }}$	Maximum Count Frequency $\overline{\mathrm{CP}}_{0}$ ('390) or $\overline{\mathrm{CP}}$ ('393)	40		MHz	Figs. 3-1, 3-9
$\mathrm{f}_{\text {max }}$	$\overline{\mathrm{CP}}_{1}$ Maximum Count Frequency	20		MHz	Figs. 3-1, 3-9
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\overline{\mathrm{CP}} 0$ ('390) or $\overline{\mathrm{CP}}$ ('393) to Q_{0}		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns	Figs. 3-1, 3-9
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay $\overline{C_{P}}$ ('390) to Q_{1}		$\begin{aligned} & 21 \\ & 21 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{\mathrm{CP}}_{1}(\text { ' } 390) \text { to } \mathrm{Q}_{2} \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns	Figs. 3-1, 3-9
$\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\overline{C P} 1$ ('390) to Q_{3}		$\begin{aligned} & 21 \\ & 21 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\overline{C P}(' 393) \text { to } Q_{1}$		$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	ns	Figs. 3-1, 3-9
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{CP}}$ ('393) to Q_{2}		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\overline{C P}$ ('393) to Q3		$\begin{aligned} & 54 \\ & 54 \\ & \hline \end{aligned}$	ns	Figs. 3-1, 3-9
tphL	Propagation Delay MR to Q_{n}		35	ns	Figs. 3-1, 3-17

AC OPERATING REQUIREMENTS: $\mathrm{VcC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/74LS		UNITS	CONDITIONS
		Min	Max		
$t_{w}(\mathrm{~L})$	CP or CP0 Pulse Width LOW	12		ns	Fig. 3-9
t_{w} (L)	CP1 Pulse Width LOW	25		ns	Fig. 3-9
$t_{w}(H)$	MR Pulse Width HIGH	20		ns	Fig. 3-17
trec	Recovery Time MR to CP	15		ns	Fig. 3-17

