74LVQ245

Low Voltage Octal Bidirectional Transceiver with TRI-STATE ${ }^{\circledR}$ Inputs/Outputs

General Description

The LVQ245 contains eight non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus-oriented applications. Current sinking capability is 12 mA at both the A and B ports. The Transmit/Receive (T/R) input determines the direction of data flow through the bidirectional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a HIGH Z condition.

Features

- Ideal for low power/low noise 3.3V applications
- Implements patented Quiet Series EMI reduction circuitry
- Available in SOIC JEDEC, SOIC EIAJ and QSOP packages
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Improved latch-up immunity
(1 Guaranteed incident wave switching into 75Ω
- 4 kV minimum ESD immunity
- MIL-STD-883 54 ACQ products are available for Military/Aerospace applications

Ordering Code: See Section 11

Logic Symbols

TLF/11357-1

Connection Diagram
Pin Assignment for SOIC and QSOP

TL/F/11357-3

Truth Table

Pin Names	Description
$\overline{O E}$	Output Enable Input
T / \bar{R}	Transmit/Receive Input
$A_{0}-A_{7}$	Side A TRI-STATE Inputs or
	TRI-STATE Outputs
$B_{0}-B_{7}$	Side B TRI-STATE Inputs or TRI-STATE Outputs

Inputs		Outputs
$\overline{\mathrm{OE}}$	$\mathbf{T} / \overline{\mathrm{R}}$	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	HIGH-Z State

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

	SOIC JEDEC	SOIC EIAJ	SSOP JEDEC
Order Number	74LVQ245SC	74LVQ245SJ	74LVQ245QSC
	74LVQ245SCX	74LVQ245SJX	74LVQ245QSCX
See NS Package Number	M20B	M20D	MQA20

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (VCC)
DC Input Diode Current (I_{K})

$$
\begin{aligned}
& V_{1}=-0.5 V \\
& V_{1}=V_{C C}+0.5 V
\end{aligned}
$$

DC Input Voltage (V_{1})
-0.5 V to +7.0 V

$$
-20 \mathrm{~mA}
$$

$$
+20 \mathrm{~mA}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}
$$

DC Output Diode Current (lok)

$$
\begin{aligned}
& V_{O}=-0.5 \mathrm{~V} \\
& V_{O}=V_{C C}+0.5 \mathrm{~V}
\end{aligned}
$$

$$
-20 \mathrm{~mA}
$$

$$
+20 \mathrm{~mA}
$$

DC Output Voltage (V_{O})
DC Output Source
or Sink Current (lo)
DC V CC or Ground Current (ICC or IGND)
Storage Temperature (TSTG)
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

$$
\pm 400 \mathrm{~mA}
$$

$\pm 400 \mathrm{~mA}$

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

DC Latch-Up Source or Sink Current

$$
\pm 50 \mathrm{~mA}
$$

$$
\pm 300 \mathrm{~mA}
$$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum raings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Supply Voltage $\left(V_{C C}\right)$	
LVQ	2.0 V to 3.6 V
Input Voltage $\left(V_{1}\right)$	0 V to $V_{C C}$
Output Voltage $\left(V_{0}\right)$	0 V to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	
74 LVQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$	
$V_{\text {IN }}$ from 0.8 V to 2.0 V	
$V_{C C} @ 3.0 \mathrm{~V}$	$125 \mathrm{mV} / \mathrm{ns}$

DC Electrical Characteristics

Symbol	Parameter	Vcc (V)			74LVQ245	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage	3.0	1.5	2.0	2.0	V	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum Low Level Input Voltage	3.0	1.5	0.8	0.8	V	$\begin{aligned} & V_{\text {OUT }}=0.1 V \\ & \text { or } V_{C C}-0.1 V \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	3.0	2.99	2.9	2.9	V	lout $=-50 \mu \mathrm{~A}$
		3.0		2.58	2.48	V	$\begin{array}{rl} { }^{*} \mathrm{~V}_{\mathrm{IN}} & =\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{IOH}^{2} & 12 \mathrm{~mA} \end{array}$
VOL	Maximum Low Level Output Voltage	3.0	0.002	0.1	0.1	V	lout $=50 \mu \mathrm{~A}$
		3.0		0.36	0.44	V	$\begin{aligned} { }^{\cdot} \mathrm{V}_{I N} & =\mathrm{V}_{\mathrm{IL}} \text { or } V_{\mathrm{IH}} \\ \mathrm{l}_{\mathrm{OL}} & +12 \mathrm{~mA} \end{aligned}$
IN	Maximum Input Leakage Current	3.6		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$

[^0]| DC Electrical Characteristics (Continued) | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Vcc
 (V) | $74 L V Q 245$ | | | 74LVQ245 | Units | Conditions | |
| | | | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | | | $\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$ | | | |
| | | | Typ | Guaranteed Limits | | | | | |
| IOLD | \dagger Minimum Dynamic Output Current | 3.6 | | | | 36 | mA | VOLD (Note | 3V Max |
| IOHD | | 3.6 | | | | -25 | mA | V_{OHD} (Note | VV Min |
| Icc | Maximum Quiescent Supply Current | 3.6 | | 4.0 | | 40.0 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{I N}= \\ & \text { or GN } \end{aligned}$ | |
| lozt | Maximum I/O Leakage Current | 3.6 | | ± 0.3 | | ± 3.0 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{1}(O E \\ & V_{1}= \\ & V_{O}= \end{aligned}$ | $\begin{aligned} & 1 \mathrm{IL}, V_{\mathrm{IH}} \\ & \text { GND } \\ & \text { GND } \end{aligned}$ |
| Volp | Quiet Output Maximum Dynamic VOL | 3.3 | 0.5 | 0.8 | | | V | (Note | |
| $\mathrm{V}_{\text {OLV }}$ | Quiet Output Minimum Dynamic VOL | 3.3 | -0.5 | -0.8 | | | V | (Note | |
| VIHD | Maximum High Level Dynamic Input Voltage | 3.3 | 1.6 | 2.0 | | | V | (Not | |
| VILD | Maximum Low Level Dynamic Input Voltage | 3.3 | 1.7 | 0.8 | | | V | (Note | |
| \dagger Maximum test duration 2.0 ms , one output loaded at a time.
 Note 1: Incident wave switching on transmission lines with impedances as low as 75Ω for commercial temperature range is guaranteed for 74 LVQ .
 Note 2: Worst case package.
 Note 3: Max number of outputs defined as (n). Data inputs are driven OV to 3.3 V ; one output at GND.
 Note 4: Max number of Data Inputs (n) switching. $\left(\mathrm{n}-1\right.$) inputs switching OV to 3.3 V . Input-under-test switching: 3.3 V to threshold (V_{IL}), oV to threshold $\left(V_{1 H D}\right), f=1 \mathrm{MHz}$.
 AC Electrical Characteristics: See Section 2 for Test Methodology | | | | | | | | | |
| Symbol | Parameter | $\begin{aligned} & \mathbf{V}_{\mathbf{C}} \\ & \mathbf{V} \end{aligned}$ | 74LVQ245 | | | | 74LVQ245 | | Units |
| | | | $\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$ | | | | $\begin{aligned} T_{A} & =-40^{\circ} \mathrm{C} \\ \text { to } & +85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$ | | |
| | | | Min | | Typ | Max | Min | Max | |
| $t_{\text {PHL }}$ t ${ }_{\text {PLH }}$ | Propagation Delay | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ | | $\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$ | $\begin{aligned} & 14.0 \\ & 10.0 \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 15.0 \\ & 10.5 \end{aligned}$ | ns |
| $\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$ | Output Enable Time | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ | | $\begin{aligned} & \hline 3.0 \\ & 3.0 \\ & \hline \end{aligned}$ | $\begin{gathered} 10.2 \\ 8.5 \\ \hline \end{gathered}$ | $\begin{aligned} & 18.3 \\ & 13.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 3.0 \\ & 3.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 19.0 \\ & 13.5 \\ & \hline \end{aligned}$ | ns |
| $t_{\text {PHZ }}, t_{\text {PLZ }}$ | Output Disable Time | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \\ \hline \end{gathered}$ | | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{gathered} 10.2 \\ 8.5 \end{gathered}$ | $\begin{aligned} & 20.4 \\ & 14.5 \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 21.0 \\ & 15.0 \end{aligned}$ | ns |
| toshl, TOSLH | Output to Output Skew* | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \\ \hline \end{gathered}$ | | | $\begin{array}{r} 1.0 \\ 1.0 \\ \hline \end{array}$ | 1.5
 1.5 | | $\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$ | ns |
| -Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (tOSHU or LOW to HIGH (tosir). Parameter guaranteed by design. | | | | | | | | | |

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=$ Open
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	15	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
C_{PD} (Note 1)	Power Dissipation Capacitance	67	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Note 1: $\mathrm{C}_{\text {PD }}$ is measured at 10 MHz .

[^0]: -All outputs loaded; thresholds on input associated with output under test.

