

Pin Descriptions

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$C P$	Clock Pulse Input
$\overline{O E}$	3-STATE Output Enable Input
$O_{0}-O_{7}$	3-STATE Outputs

Functional Description

The LVQ374 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D-type inputs that meet the setup and hold time re-

Truth Table

Inputs			Outputs
D_{n}	CP	$\overline{\mathrm{OE}}$	O_{n}
H	-	L	H
L	-	L	L
X	X	H	Z

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
Z = High Impedance
$\sim=$ LOW-to-HIGH Transition
quirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}})$ LOW, the contents of the eight flip-flops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays

AC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	$\begin{gathered} \hline 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 55 \\ & 75 \end{aligned}$			$\begin{aligned} & 50 \\ & 70 \end{aligned}$		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to O_{n}	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 11.4 \\ 9.5 \end{gathered}$	$\begin{aligned} & 18.3 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 13.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	$\begin{gathered} \hline 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 11.4 \\ 9.5 \end{gathered}$	$\begin{aligned} & \hline 18.3 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & \frac{\mathrm{t}_{\mathrm{PHZ}}}{} \\ & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{gathered} \hline 2.7 \\ 3.3 \pm 0.3 \\ \hline \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 11.4 \\ 9.5 \end{gathered}$	$\begin{aligned} & \hline 20.4 \\ & 14.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 21.0 \\ & 15.0 \\ & \hline \end{aligned}$	ns
toshl tosth	Output to Output Skew (Note 9) CP to O_{n}	$\begin{gathered} \hline 2.7 \\ 3.3 \pm 0.3 \\ \hline \end{gathered}$		$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW ($\mathrm{O}_{\mathrm{OSHL}}$) or LOW to HIGH ($\mathrm{t}_{\mathrm{OSLH}}$). Parameter guaranteed by design.

AC Operating Requirements

Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}-\text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ	Guaranteed Minimum		
ts	Setup Time, HIGH or LOW	2.7	0	4.0	4.5	ns
	D_{n} to CP	3.3 ± 0.3	0	3.0	3.0	
t_{H}	Hold Time, HIGH or LOW	2.7	0	1.5	1.5	ns
	$\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CP}$	3.3 ± 0.3	0	1.5	1.5	
tw	CP Pulse Width,	2.7	2.4	5.0	6.0	ns
	HIGH or LOW	3.3 ± 0.3		4.0	4.0	

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=$ Open
C_{PD} (Note 10)	Power Dissipation Capacitance	39	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Note 10: $\mathrm{C}_{\text {PD }}$ is measured at 10 MHz

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead (0.300 " Wide) Molded Small Outline Package, SOIC JEDEC
Package Number M20B

20-Lead Molded Shrink Small Outline Package, SOIC EIAJ
Package Number M20D
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

