

Truth Table

Inputs			Outputs
$\overline{\mathbf{O E}}$	LE	\mathbf{D}	$\mathbf{O}_{\mathbf{n}}$
L	H	H	H
L	H	L	L
L	L	X	O_{0}
H	X	X	Z

H = HIGH Voltage
L = LOW Voltage
$Z=$ High Impedance
$\mathrm{X}=$ Immaterial
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW transition of Latch Enable

Functional Description

The LVQ573 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D-type input changes. When LE is LOW the latches store the information that was present on the D-type inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable $(\overline{O E})$ input. When $\overline{O E}$ is LOW, the buffers are enabled When $\overline{\mathrm{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)					Recommended Operating		
Supply Voltage (V_{cc}) $\quad-0.5 \mathrm{~V}$ to +7.0 V					Conditions (Note 2)		
DC Input Diode Current ($\mathrm{I}_{\text {K }}$)$\mathrm{V}_{1}=-0.5 \mathrm{~V}$					Supply Voltage (V_{cc}) 2.0 V to 3.6 V		
					Input Voltage (V_{I})		OV to V_{Cc}
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$			+20 mA		Output Voltage (V_{O})		0 V to V_{cc}
DC Input Voltage $\left(\mathrm{V}_{\mathrm{I}}\right) \quad-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$					Operating Temperature (T_{A})Minimum Input Edge Rate ($\Delta \mathrm{V}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DC Output Diode Current (I_{OK})							Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \end{aligned}$			-20 mA		$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V		
			+20 mA		$\mathrm{V}_{\mathrm{Cc}} @ 3.0 \mathrm{~V}$		$125 \mathrm{mV} / \mathrm{ns}$
DC Output Voltage (V_{O}) $\quad-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$					Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The		
DC Output Source							
DC $V_{C C}$ or Ground Current (I_{Cc} or $\mathrm{I}_{\mathrm{GND}}$)					"Recommended Operating Conditions" table will define the conditions for actual device operation.		
			Note 2: Unused inputs must be held HIGH or LOW. They may not float.				
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)						$\begin{array}{r} \pm 400 \mathrm{~mA} \\ -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{array}$	
DC Latch-Up Source or							
Sink Current			$\pm 300 \mathrm{~mA}$				
DC Electrical Characteristics							
Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage	3.0	1.5	2.0	2.0	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum Low Level Input Voltage	3.0	1.5	0.8	0.8	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level	3.0	2.99	2.9	2.9	V	$\mathrm{l}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		3.0		2.58	2.48	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}(\text { Note } 3) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum Low Level	3.0	0.002	0.1	0.1	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
	Output Voltage	3.0		0.36	0.44	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}(\text { Note } 3) \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
I_{N}	Maximum Input Leakage Current	3.6		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
Iold	Minimum Dynamic	3.6			36	mA	$\mathrm{V}_{\text {OLD }}=0.8 \mathrm{~V}_{\text {Max }}$ (Note 5)
І		3.6			-25	mA	$\mathrm{V}_{\text {OHD }}=2.0 \mathrm{~V} \mathrm{~V}_{\text {Min }}$ (Note 5)
$I_{\text {cc }}$	Maximum Quiescent Supply Current	3.6		4.0	40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
loz	3-STATE Leakage Curent	3.6		± 0.25	± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\overline{\mathrm{OE}})=\mathrm{V}_{\mathrm{LL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \hline \end{aligned}$
V ${ }_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	3.3	0.4	0.8		V	(Notes 6, 7)
VoLV	Quiet Output Minimum Dynamic V_{OL}	3.3	-0.4	-0.8		V	(Notes 6, 7)
$\mathrm{V}_{\text {IHD }}$	Maximum High Level Dynamic Input Voltage	3.3	1.6	2.0		V	(Notes 6, 8)
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage	3.3	1.6	0.8		V	(Notes 6, 8)
Note 3:	outputs loaded; thresholds	sociate	output	test.			
Note 4:	ximum test duration 2.0 ms ,	t loaded	time.				
Note 5:	ident wave switching on tra	ines with	pedance	w as 7	or commercial temperatu	nge is	anteed for.
Note 6:	rst case package.						
Note 7:	x number of outputs define	ata inpu	driven	3.3V;	utput at GND.		
Note 8: $\mathrm{f}=1 \mathrm{Mr}$	ax number of Data Inputs ($(n-1)$	ts switc	V to 3.3	put-under-test switching:	to thre	$\mathrm{d}\left(\mathrm{V}_{\mathrm{ILD}}\right)$, OV to threshold ($\mathrm{V}_{\text {IHD }}$),

AC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	2.7	2.5	10.2	14.8	2.5	16.0	ns
$\mathrm{t}_{\text {PLH }}$	$\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{O}_{\mathrm{n}}$	3.3 ± 0.3	2.5	8.5	10.5	2.5	11.0	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	2.7	2.5	10.2	16.9	2.5	18.0	ns
$t_{\text {PHL }}$	LE to O_{n}	3.3 ± 0.3	2.5	8.5	12.0	2.5	12.5	
$\mathrm{t}_{\text {PZL }}$	Output Enable Time	2.7	2.5	10.2	18.3	2.5	19.0	ns
$t_{\text {PZH }}$		3.3 ± 0.3	2.5	8.5	13.0	2.5	13.5	
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	2.7	1.0	10.8	20.4	1.0	21.0	ns
tpLz		3.3 ± 0.3	1.0	9.0	14.5	1.0	15.0	
$\mathrm{t}_{\text {OSHL }}$	Output to Output Skew (Note 9)	2.7		1.0	1.5		1.5	ns
t_{OSLH}	D_{n} to O_{n}	3.3 ± 0.3		1.0	1.5		1.5	

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (tOSHL) or LOW to HIGH (tOSLH). Parameter guaranteed by design.

AC Operating Requirements

Symbol	Parameter	$V_{\text {CC }}$ (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ	Guaranteed Minimum		
t_{s}	Setup Time, HIGH or LOW	2.7	0	4.0	4.5	ns
	D_{n} to LE	3.3 ± 0.3	0	3.0	3.0	
t_{H}	Hold Time, HIGH or LOW	2.7	0	1.5	1.5	ns
	D_{n} to LE	3.3 ± 0.3	0	1.5	1.5	
t_{W}	LE Pulse Width, HIGH	2.7	2.4	5.0	6.0	ns
		3.3 ± 0.3	2.0	4.0	4.0	

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=$ Open
$\mathrm{C}_{\mathrm{PD}}($ Note 10 $)$	Power Dissipation Capacitance	37	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Note 10: $\mathrm{C}_{\text {PD }}$ is measured at 10 MHz

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead (0.300 " Wide) Molded Small Outline Package, SOIC, JEDEC
Package Number M20B

20-Lead Molded Shrink Small Outline Package, SOIC, EIAJ
Package Number M20D
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	Fairchild Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	8/F Room 808 Empire Centre	4F, Natsume BI,
Customer Response Center	Email: europe.support@nsc.com	68 Mody Road, Tsimshatsui East	2-18-6 Yushima, Bunkyo-ku,
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Kowloon, Hong Kong	Tokyo 113-0034, Japan
Fax: 972-910-8036	English Tel: +44 (0) 1 793-85-68-56	Tel: 852-2722-8338	Tel: 81-3-3818-8840
	Italy Tel: +39 (0) 2575631	Fax: 852-2722-8383	Fax: 81-3-3818-8450

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

