

Connection Diagram

Pin Descriptions

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
CP	Clock Pulse Input
$\overline{\mathrm{OE}}$	3-STATE Output Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	3-STATE Outputs

Truth Table

Inputs			Outputs
D_{n}	CP	$\overline{\mathrm{OE}}$	O_{n}
H	\sim	L	H
L	\sim	L	L
X	L	L	O_{0}
X	X	H	Z

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
= LOW Voltage Leve
$\mathrm{X}=$ Immaterial
$\mathrm{Z}=$ High Impedance
= LOW-to-HIGH Transition
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH to LOW of CP

Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}}$) LOW, the contents of the eight flip-flops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

Functional Description

The LVT574 and LVTH574 consist of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH
Logic Diagram

Absolute Maximum Ratings(Note 1)					
Symbol	Parameter	Value	Conditions		Units
V_{CC}	Supply Voltage	-0.5 to +4.6			V
V_{1}	DC Input Voltage	-0.5 to +7.0			V
V_{O}	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE		V
		-0.5 to +7.0	Output in High or Low State (Note 2)		
I_{IK}	DC Input Diode Current	-50	$V_{1}<$ GND		mA
$\mathrm{l}_{\text {OK }}$	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<$ GND		mA
Io	DC Output Current	64	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ Output at High State		mA
		128	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$ Output at Low State		
I_{CC}	DC Supply Current per Supply Pin	± 64			mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 128			mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150			${ }^{\circ} \mathrm{C}$
Recommended Operating Conditions					
Symbol	Parameter		Min	Max	Units
$\mathrm{V}_{\text {CC }}$	Supply Voltage		2.7	3.6	V
V_{1}	Input Voltage		0	5.5	V
${ }_{\mathrm{O}}$	High-Level Output Current			-32	mA
${ }_{\text {OL }}$	Low-Level Output Current			64	mA
T_{A}	Free-Air Operating Temperature		-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0	10	ns / V
Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 2: I_{O} Absolute Maximum Rating must be observed. DC Electrical Characteristics					

Symbol	Parameter	v_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 3)	Max		
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage	2.7			-1.2	V	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{IH}	Input HIGH Voltage	2.7-3.6	2.0			V	$\mathrm{V}_{\mathrm{O}} \leq 0.1 \mathrm{~V}$ or
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	2.7-3.6			0.8	V	$\mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\text {CC }}-0.1 \mathrm{~V}$
V_{OH}	Output HIGH Voltage	2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$			v	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
		2.7	2.4				$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$
		3.0	2.0				$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	2.7			0.2	v	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$
		2.7			0.5		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$
		3.0			0.4		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$
		3.0			0.5		$\mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$
		3.0			0.55		$\mathrm{l}^{\mathrm{OL}}=64 \mathrm{~mA}$
$I_{\text {(HOLD) }}$ (Note 4)	Bushold Input Minimum Drive	3.0	75			$\mu \mathrm{A}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$
			-75				$\mathrm{V}_{1}=2.0 \mathrm{~V}$
$I_{\text {(OD) }}$ (Note 4)	Bushold Input Over-Drive Current to Change State	3.0	500			$\mu \mathrm{A}$	(Note 5)
			-500				(Note 6)
\square	Input Current 	3.6			10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$
		3.6			± 1		$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}
		3.6			-5		$\mathrm{V}_{1}=0 \mathrm{~V}$
					1		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$
$\overline{\text { IOFF }}$	Power Off Leakage Current	0			± 100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$
$\mathrm{I}_{\text {PU/PD }}$	Power up/down 3-STATE Output Current	0-1.5V			± 100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
IozL	3-STATE Output Leakage Current	3.6			-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	3-STATE Output Leakage Current	3.6			5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}$

DC Electrical Characteristics (Continued)

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min		Max		
IOZH^{+}	3-STATE Output Leakage Current	3.6			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current	3.6			0.19	mA	Outputs High
$\mathrm{I}_{\text {CCL }}$	Power Supply Current	3.6			5	mA	Outputs Low
$\mathrm{I}_{\mathrm{CCZ}}$	Power Supply Current	3.6			0.19	mA	Outputs Disabled
$\mathrm{I}_{\mathrm{CCZ}}{ }^{+}$	Power Supply Current	3.6			0.19	mA	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V},$ Outputs Disabled
$\triangle_{\text {CC }}$	Increase in Power Supply Current (Note 7)	3.6			0.2	mA	One Input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ Other Inputs at V_{CC} or GND

Note 3: All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Applies to bushold versions only (74LVTH574).
Note 5: An external driver must source at least the specified current to switch from LOW to HIGH.
Note 6: An external driver must sink at least the specified current to switch from HIGH to LOW
Note 7: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND
Dynamic Switching Characteristics (Note 8)

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$			Units	Conditions $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, $R_{L}=500 \Omega$
			Min	Typ	Max		
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	3.3		0.8		V	(Note 9)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	3.3		-0.8		V	(Note 9)

Note 8: Characterized in SOIC package. Guaranteed parameter, but not tested
Note 9: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven OV to 3 V . Output under test held LOW
AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$					Units
		$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
		Min	Typ (Note 10)	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	150			150		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay CP to O_{n}	$\begin{aligned} & \hline 1.8 \\ & 1.8 \end{aligned}$		$\begin{aligned} & \hline 4.6 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \hline 5.3 \\ & 5.3 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 5.2 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 5.9 \end{aligned}$	ns
$\begin{aligned} & t_{P L Z} \\ & t_{P H Z} \end{aligned}$	Output Disable Time	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 4.4 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.1 \end{aligned}$	ns
t_{S}	Setup Time	2.0			2.4		ns
t_{H}	Hold Time	0.3			0.0		ns
t_{W}	Pulse Width	3.3			3.3		ns
toshl t^{\prime} OSLH	Output to Output Skew (Note 11)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns

Note 10: All typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW to HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).
Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	pF	

[^0]

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide Package Number MSA20

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

[^0]: Note 12: Capacitance is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.

