

Absolute Maximum Ratings (Note 1)		Lead Temperature ($T_{\llcorner }$) (Soldering, 10 sec.)	.) $240^{\circ} \mathrm{C}$
Supply Voltage (V_{cc})	-0.5 V to +7.0 V	Recommended Operating Conditions (Note 2)	
DC Input Diode Current (I_{IK}) $\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA		
DC Input Voltage (V_{1})	-0.5 V to 7 V	Supply Voltage (V_{CC})	2.0 V to 3.6 V
DC Output Diode Current (lok)		Input Voltage (V_{1})	0 V to 5.5 V
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA	Output Voltage (V_{0})	OV to V_{cc}
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$	+20 mA	Operating Temperature (T_{A})	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DC Output Voltage (V_{o})	-0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$	Input Rise and Fall Time ($\Delta t / \Delta \mathrm{V}$) 0	$0 \mathrm{~ns} / \mathrm{V}$ to $100 \mathrm{~ns} / \mathrm{V}$
DC Output Source or Sink Current (l_{O})	$\pm 25 \mathrm{~mA}$	Note 1: The "Absolute Maximum Ratings" are those the safety of the device cannot be guaranteed. The dev erated at these limits. The parametric values defined in	values beyond which evice should not be opthe Electrical Charac-
DC V_{CC} or Ground Current (I_{cc} or $\mathrm{I}_{\text {GND }}$)	$\pm 50 \mathrm{~mA}$	teristics tables are not guaranteed at the absolute maxi "Recommended Operating Conditions" table will define tual device operation.	maximum ratings. The the conditions for ac-
Storage Temperature ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Note 2: Unused inputs must be held HIGH or Low. Th	They may not float.
Power Dissipation	180 mW		

DC Electrical Characteristics

Symbol	Parameter	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		Units	Conditions	
			Min	Typ	Max	Min	Max			
V_{IH}	High Level Input Voltage	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 2.0 \\ 2.4 \\ \hline \end{gathered}$	1		$\begin{array}{r} \hline 1.5 \\ 2.0 \\ 2.4 \\ \hline \end{array}$		v		
V_{IL}	Low Level Input Voltage	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	V		
V_{OH}	High Level Output Voltage	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 1.9 \\ 2.9 \\ 2.58 \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \end{aligned}$		$\begin{gathered} \hline 1.9 \\ 2.9 \\ 2.48 \end{gathered}$		V	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		0.0	$\begin{gathered} \hline 0.1 \\ 0.1 \\ 0.36 \end{gathered}$		$\begin{gathered} \hline 0.1 \\ 0.1 \\ 0.44 \\ \hline \end{gathered}$	v	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \hline \end{aligned}$
$\mathrm{I}_{\text {I }}$	Input Leakage Current	3.6			± 0.1		± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GN	
$\mathrm{I}_{\text {c }}$	Quiescent Supply Current	3.6			2.0		20.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	

Noise Characteristics (Note 3)

Symbol	Parameter	$\begin{aligned} & V_{c c} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Units	$\mathrm{C}_{\mathrm{L}}(\mathrm{pF})$
			Typ	Limit		
V ${ }_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	3.3	0.3	0.5	V	50
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	3.3	-0.3	-0.5	V	50
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage	3.3		2.0	V	50
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage	3.3		0.8	V	50

Note 3: Input $t_{r}=t_{f}=3 \mathrm{~ns}$

AC Electrical Characteristics

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	$\begin{aligned} & \mathrm{C}_{\mathrm{L}} \\ & (\mathrm{pF}) \end{aligned}$
			Min	Typ	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Time	2.7		6.3	11.4	1.0	13.5	ns	15
				8.8	14.9	1.0	17.0		50
		3.3 ± 0.3		4.8	7.1	1.0	8.5		15
				7.3	10.6	1.0	12.0		50
$\begin{aligned} & \mathrm{t}_{\mathrm{OSLH}} \\ & \mathrm{t}_{\mathrm{OSHL}} \end{aligned}$	Output to Output Skew (Note 4)	2.7			1.5		1.5	ns	50

Note 4: Parameter guaranteed by design. t OSLH $=\mid \mathrm{t}$ PLHm - tpLHn \mid, $\mathrm{t}_{\mathrm{OSHL}}=\mid \mathrm{t}$ PHLm - tpHLn \mid

Capacitance

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		4	10		10	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 5)		18				pF

Note 5: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $I_{C C(o p r .)}=\frac{C_{P D} \times V_{C C} \times f_{I N}+I_{C C}}{4 \text { (per Gate) }}$
\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

