FAIRCHILD
 SEMICONDUCTOR ${ }_{\text {m }}$
 74LVX3245
 8-Bit Dual Supply Translating Transceiver with 3-STATE Outputs

General Description

The LVX3245 is a dual-supply, 8-bit translating transceiver that is designed to interface between a 3 V bus and a 5 V bus in a mixed $3 \mathrm{~V} / 5 \mathrm{~V}$ supply environment. The Transmit/Receive (T/R) input determines the direction of data flow. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a HIGH Z condition. The A port interfaces with the 3 V bus; the B port interfaces with the 5 V bus.
The LVX3245 is suitable for mixed voltage applications such as notebook computers using 3.3 V CPU and 5 V peripheral components.

Features

- Bidirectional interface between 3 V and 5 V buses
- Inputs compatible with TTL level
- 3V data flow at A port and 5 V data flow at B port
- Outputs source/sink 24 mA
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Available in SOIC, QSOP and TSSOP packages
- Implements proprietary EMI reduction circuitry
- Functionally compatible with the 74 series 245

Absolute Maximum Ratings (Note 1)

Supply Voltage ($\mathrm{V}_{\mathrm{CCA}}, \mathrm{V}_{\mathrm{CCB}}$)
DC Input Voltage (V_{I}) @ $\overline{\mathrm{OE},} \mathrm{T} / \overline{\mathrm{R}}$ DC Input/Output Voltage ($\mathrm{V}_{1 / \mathrm{O}}$) @ $A(n)$ @ B(n)
DC Input Diode Current (I_{IN}) @ OE, T/R
DC Output Diode Current (l_{OK})
DC Output Source or
Sink Current (lo)
DC V_{CC} or Ground Current per Output Pin (I_{CC} or $\mathrm{I}_{\mathrm{GND}}$) and Max Current @ $I_{\text {CCA }}$ @l $\mathbf{l C B}^{\text {C }}$
Storage Temperature Range (T $\mathrm{T}_{\text {StG }}$)
DC Latch-Up Source or Sink Current
-0.5 V to +7.0 V
-0.5 V to $\mathrm{V}_{\mathrm{CCB}}+0.5 \mathrm{~V}$
-0.5 V to $\mathrm{V}_{\mathrm{CCA}}+0.5 \mathrm{~V}$
-0.5 V to $\mathrm{V}_{\mathrm{CCB}}+0.5 \mathrm{~V}$
$\pm 20 \mathrm{~mA}$ $\pm 50 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
$\pm 100 \mathrm{~mA}$ $\pm 200 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\pm 300 \mathrm{~mA}$

Recommended Operating
Conditions (Note 2)
Supply Voltage

$\mathrm{V}_{\mathrm{CCA}}$	2.7 V to 3.6 V
$\mathrm{~V}_{\mathrm{CCB}}$	4.5 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\mathrm{I}}\right) @ \overline{\mathrm{OE}}, \mathrm{T} / \overline{\mathrm{R}}$	0 V to $\mathrm{V}_{\mathrm{CCB}}$
Input/Output Voltage $\left(\mathrm{V}_{\mathrm{I}} / \mathrm{O}\right)$	
$@ \mathrm{~A}(\mathrm{n})$	0 V to $\mathrm{V}_{\mathrm{CCA}}$
$@ \mathrm{~B}(\mathrm{n})$	0 V to $\mathrm{V}_{\mathrm{CCB}}$
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate $(\Delta \mathrm{t} / \Delta \mathrm{V})$	$8 \mathrm{~ns} / \mathrm{V}$

Minimum Input Edge Rate ($\Delta \mathrm{t} / \Delta \mathrm{V}$)
8 ns/V
$V_{\text {IN }}$ from 30% to 70% of $V_{\text {CC }}$
$\mathrm{V}_{\mathrm{Cc}} @ 3.0 \mathrm{~V}, 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be op erated at these limits. The parametric values defined in the Electrical Charac teristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: Unused Pins (inputs and I/Os) must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter		$\mathrm{V}_{\text {CCA }}$ (V)	$\mathrm{V}_{\mathrm{CCB}}$ (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85${ }^{\circ} \mathrm{C}$	Units	Conditions	
			Typ		Guaranteed Limits					
$\mathrm{V}_{\mathrm{IHA}}$	Minimum High Level Input Voltage	$\begin{aligned} & \mathrm{A}(\mathrm{n}), \mathrm{T} / \overline{\mathrm{R}}, \\ & \overline{\mathrm{OE}} \end{aligned}$		$\begin{aligned} & \hline 3.6 \\ & 2.7 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & V_{\text {OUT }} \leq 0.1 \mathrm{~V} \text { or } \\ & \geq V_{C C}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{IHB}}$		B(n)	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			
$\mathrm{V}_{\text {ILA }}$	Maximum Low Level Input Voltage	$\begin{aligned} & \mathrm{A}(\mathrm{n}), \mathrm{T} / \overline{\mathrm{R}}, \\ & \overline{\mathrm{OE}} \end{aligned}$	$\begin{aligned} & 3.6 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }} \leq 0.1 \mathrm{~V} \text { or } \\ & \geq \mathrm{V}_{\text {CC }}-0.1 \mathrm{~V} \end{aligned}$	
VILB		B(n)	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$			
$\mathrm{V}_{\text {OHA }}$	Minimum High Level Output Voltage		$\begin{aligned} & 3.0 \\ & 3.0 \\ & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & 4.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} \hline 2.99 \\ 2.65 \\ 2.5 \\ 2.3 \end{gathered}$	$\begin{gathered} \hline 2.9 \\ 2.35 \\ 2.3 \\ 2.1 \end{gathered}$	$\begin{gathered} \hline 2.9 \\ 2.25 \\ 2.2 \\ 2.0 \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$	
$\mathrm{V}_{\text {OHB }}$			$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 4.5 \\ 4.25 \end{gathered}$	$\begin{gathered} 4.4 \\ 3.86 \end{gathered}$	$\begin{gathered} 4.4 \\ 3.76 \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$	
$\mathrm{V}_{\text {OLA }}$	Maximum Low Level Output Voltage		$\begin{aligned} & \hline 3.0 \\ & 3.0 \\ & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & 4.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} \hline 0.002 \\ 0.21 \\ 0.11 \\ 0.22 \end{gathered}$	$\begin{gathered} 0.1 \\ 0.36 \\ 0.36 \\ 0.42 \end{gathered}$	$\begin{gathered} \hline 0.1 \\ 0.44 \\ 0.44 \\ 0.5 \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$	
$\mathrm{V}_{\text {OLB }}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 0.002 \\ 0.18 \end{gathered}$	$\begin{gathered} \hline 0.1 \\ 0.36 \end{gathered}$	$\begin{gathered} \hline 0.1 \\ 0.44 \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$	
I_{N}	Maximum Input Leakage Current @ $\overline{\mathrm{OE}, \mathrm{T} / \bar{R}}$		3.6	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {CCB }}, \mathrm{GND}$	
IOZA	Maximum 3-STATE Output Leakage @ A(n)		3.6	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{OE}=\mathrm{V}_{\mathrm{CCA}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CCA}}, \mathrm{GND} \end{aligned}$	
$\mathrm{I}_{\text {OZB }}$	Maximum 3-STATE Output Leakage @ B(n)		3.6	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{OE}=\mathrm{V}_{\mathrm{CCA}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CCB}}, \mathrm{GND} \end{aligned}$	
$\Delta_{\text {l }}$	Maximum ICCT/Input @	$B(\mathrm{n})$	3.6	5.5	1.0	1.35	1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {CCB }}-2.1 \mathrm{~V}$	
		$\begin{aligned} & \mathrm{A}(\mathrm{n}), \mathrm{T} / \overline{\mathrm{R}}, \\ & \overline{\mathrm{OE}} \end{aligned}$	3.6	5.5		0.35	0.5	mA	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }}-0.6 \mathrm{~V}$	

DC Electrical Characteristics (Continued)

Note 3: Maximum test duration 2.0 ms , one output loaded at a time.
Note 4: Worst case package.
Note 5: Max number of outputs defined as (n). Data inputs are driven 0 V to V_{CC} level; one output at GND.
Note 6: Max number of Data Inputs (n) switching. $(\mathrm{n}-1)$ inputs switching 0 V to V_{CC} level. Input-under-test switching: V_{CC} level to threshold $\left(\mathrm{V}_{1 H D}\right)$, 0 V to threshold $\left(V_{\text {ILD }}\right), f=1 \mathrm{MHz}$.

AC Electrical Characteristics

Symbol	Parameters	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{CCA}}=3.3 \mathrm{~V}(\text { Note } 8) \\ \left.\mathrm{V}_{\mathrm{CCB}}=5.0 \mathrm{~V} \text { (Note } 7\right) \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{CCA}}=3.3 \mathrm{~V}(\text { Note } 8) \\ \mathrm{V}_{\mathrm{CCB}}=5.0 \mathrm{~V} \text { (Note 7) } \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{CCA}}=2.7 \mathrm{~V} \\ \left.\mathrm{~V}_{\mathrm{CCB}}=5.0 \mathrm{~V} \text { (Note } 7\right) \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay A to B	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 5.4 \\ & 5.6 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay B to A	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.7 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to B	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 6.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 9.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to A	$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.3 \\ & 6.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 10.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to B	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.2 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to A	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 3.7 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{OSHL}}$ tosth	Output to Output Skew (Note 9) Data to Output		1.0	1.5		1.5		1.5	ns

Note 7: Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
Note 8: Voltage Range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (tosHL) or LOW to HIGH (tosLh). Parameter guaranteed by design.

Capacitance

Symbol	Parameter		Typ	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance		4.5	pF	$\mathrm{V}_{\mathrm{CC}}=$ Open
$\mathrm{C}_{1 / \mathrm{O}}$	Input/Output Capacitance		15	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCB}}=5.0 \mathrm{~V} \end{aligned}$
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	A \rightarrow B $B \rightarrow A$	55	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{CCB}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCA}}=3.3 \mathrm{~V} \end{aligned}$

Note 10: $\mathrm{C}_{\text {PD }}$ is measured at 10 MHz

8-Bit Dual Supply Translating Transceiver

The LVX3245 is a dual supply device capable of bidirectional signal translation. This level shifting ability provides an efficient interface between low voltage CPU local bus with memory and a standard bus defined by 5 V I/O levels. The device control inputs can be controlled by either the low voltage CPU and core logic or a bus arbitrator with 5 V I/O levels. Manufactured on a sub-micron CMOS process, the LVX3245 is ideal for mixed voltage applications such as notebook computers using 3.3V CPU's and 5 V peripheral devices.

\square

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead (0.150 " Wide) Molded Shrink Small Outline Package, JEDEC (also known as: QSOP) Package Number MQA24
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor		Fairchild Semiconductor
Corporation	Europe	Hong Kong Ltd.	National Semiconductor
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

