

Pin Descriptions

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$C P$	Clock Pulse Input
$\overline{O E}$	3-STATE Output Enable Input
$O_{0}-O_{7}$	3-STATE Outputs

Truth Table

Inputs			Outputs
D_{n}	CP	$\overline{\mathrm{OE}}$	O_{n}
H	\checkmark	L	H
L	-	L	L
X	X	H	Z

H $=$ HIGH Voltage Leve
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
Z = High Impedance
$\sim=$ LOW-to-HIGH Transition

Functional Description

The LVX374 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time require-
ments on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}}$) LOW, the contents of the eight flip-flops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)		Recommended Operating Conditions (Note 2)
Supply Voltage (V_{cc})	-0.5 V to +7.0 V	
DC Input Diode Current (I_{K}) $v_{1}=-0.5 \mathrm{~V}$	-20 mA	Supply Voltage $\left(\mathrm{V}_{\mathrm{cc}}\right)$ 2.0 V to 3.6 V Input Voltage $\left(\mathrm{V}_{\mathrm{l}}\right)$ 0 V to 5.5 V
DC Input Voltage (V_{1})	-0.5 V to 7 V	Output Voltage (V_{0}) $\mathrm{Cl}^{\text {a }}$ to V_{cc}
DC Output Diode Current (lok)		Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA	Input Rise and Fall Time ($\Delta t / \Delta \mathrm{V}$) $0 \mathrm{~ns} / \mathrm{V}$ to $100 \mathrm{~ns} / \mathrm{V}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$	+20 mA	Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characeristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operarting Conditions" table will define the conditions for actual device operation.
DC Output Voltage (Vo)	-0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$	
DC Output Source or Sink Current (l_{o})	$\pm 25 \mathrm{~mA}$	
DC V_{CC} or Ground Current (I_{CC} or $\mathrm{I}_{\mathrm{GND}}$)	$\pm 75 \mathrm{~mA}$	Note 2: Unused inputs must be held HIGH or Low. They may not float.
Storage Temperature ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Power Dissipation	180 mW	

DC Electrical Characteristics

Symbol	Parameter	v_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
			Min	Typ	Max	Min	Max			
V_{IH}	High Level Input Voltage	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & 2.4 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.0 \\ & 2.4 \end{aligned}$		V		
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	V		
V_{OH}	High Level Output Voltage	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 1.9 \\ 2.9 \\ 2.58 \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \end{aligned}$		$\begin{gathered} \hline 1.9 \\ 2.9 \\ 2.48 \end{gathered}$		V	$\begin{aligned} \mathrm{V}_{\mathrm{IN}} & =\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & I_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.0 \\ & 0.0 \end{aligned}$	$\begin{gathered} \hline 0.1 \\ 0.1 \\ 0.36 \\ \hline \end{gathered}$		$\begin{gathered} \hline 0.1 \\ 0.1 \\ 0.44 \end{gathered}$	V	$\begin{aligned} \mathrm{V}_{\mathrm{IN}} & =\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \hline \end{aligned}$
loz	3-STATE Output Off-State Current	3.6			± 0.25		± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{C}} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{V}_{\mathrm{LL}}} \\ & \text { or GND } \end{aligned}$
I_{N}	Input Leakage Current	3.6			± 0.1		1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	GND
I_{cc}	Quiescent Supply Current	3.6			4.0		40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$	GND

Noise Characteristics (Note 3)

Symbol	Parameter	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Units	$\mathrm{C}_{\mathrm{L}}(\mathrm{pF})$
			Typ	Limit		
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	3.3	0.5	0.8	V	50
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	3.3	-0.5	-0.8	V	50
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage	3.3		2.0	V	50
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage	3.3		0.8	V	50

Note 3: Input $t_{r}=t_{f}=3 \mathrm{~ns}$

AC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		Units	Conditions
			Min	Typ	Max	Min	Max		
${ }_{\text {max }}$	Maximum Clock Frequency	2.7	60	115		50		MHz	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
			45	60		40			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
		3.3 ± 0.3	100	160		85			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
			60	95		55			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Time CP to O_{n}	2.7		8.5	16.3	1.0	19.5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
				11.0	19.8	1.0	23.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
		3.3 ± 0.3		6.7	10.6	1.0	12.5		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
				9.2	14.1	1.0	16.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & \hline \mathrm{t}_{\text {PZL }} \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	3-STATE Output Enable Time	2.7		7.6	14.5	1.0	17.5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
				10.1	18.0	1.0	21.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
		3.3 ± 0.3		5.9	9.3	1.0	11.0		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
				8.4	12.8	1.0	14.5		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
tpLz	3-STATE Output	2.7		11.5	18.5	1.0	22.0	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
$\mathrm{t}_{\text {PHZ }}$	Disable Time	3.3 ± 0.3		9.6	13.2	1.0	15.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
$\mathrm{t}_{\text {w }}$	CP Pulse Width	2.7	7.5			8.0		ns	
		3.3 ± 0.3	5.0			5.5			
ts_{s}	Setup Time$D_{n} \text { to } C P$	2.7	6.5			6.5		ns	
		3.3 ± 0.3	4.5			4.5			
t_{H}	Hold Time D_{n} to CP	2.7	2.0			2.0		ns	
		3.3 ± 0.3	2.0			2.0			
$\mathrm{t}_{\mathrm{OSLH}}$ toshl	Output to Output Skew (Note 4)	2.7			1.5		1.5	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Note 4: Parameter guaranteed by design. $\mathrm{t}_{\mathrm{OLLH}}=\left|\mathrm{t}_{\text {PLHm }}-\mathrm{t}_{\text {PLHn }}\right|, \mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\text {PHLm }}-\mathrm{t}_{\text {PHLn }}\right|$
Capacitance

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		4	10		10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		6				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 5)		32				pF

Note 5: $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load

```
Average operating current can be obtained by the equation: \(I_{C C(\text { opr. })}=\frac{C_{P D} \times V_{C C} \times f_{I N}+I_{C C}}{8(\text { per } F / F)}\)
```

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Package JEDEC SOIC
Package Number M20B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

