SAMYO ${ }^{\text {No. } 4467}$ LC75850E, 75850W

Overview

The LC75850E and LC75850W are general purpose LCD drivers for use in microprocessor controlled applications such as radio tuner frequency displays.

Functions

- Supports both $1 / 3$ duty $1 / 2$ bias and $1 / 3$ duty $1 / 3$ bias LCD drive techniques for a maximum of 156 segments.
- Power saving mode allows the backup function to be switched on or off and all segments to be turned off unconditionally.
- Can be controlled by three serial data lines (CE, CL, and DI) from the microprocessor. (CCB handling)
- High generality, since segment data can be displayed without going through a decoder
- The INH pin unconditionally turns off display
- The LCD drive bias voltage can be provided internally or externally.
- Power supply voltage: 4.5 to 8 V

Package Dimensions

unit: mm
3159-QIP64E (LC75850E)

unit: mm
3190-SQFP64 (LC75850W)

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Condition	Faling	Unit
Maximum supply voltage	$V_{O D}$ max	$V_{D D}$	-0.3 to +9.0	V
Input voltage	$\mathrm{V}_{\text {IN }}(1)$	CE, CL, DI, $\overline{\text { NH }}$	-0.3 to +9.0	V
	$V_{\text {IN }}(2)$	OSC	-0.3 10 $V_{00}+0.3$	V
Output voltage	Vout	OSC	-0.3 to $V_{D O}+0.3$	V
Output current	IOUT (1)	S1 to S52	300	$\mu \mathrm{A}$
	lout (2)	COM1 to COM3	3	mA
Allowable power dissipation	Pd max	Tas $85^{\circ} \mathrm{C}$	200	mW
Operating temperature	Topr		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +125	${ }^{\circ} \mathrm{C}$

SANYO Electric Co., Ltd. Semiconductor Business Headquarters

Allowable Operating Ranges at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
Supply voltage	$V_{\text {DD }}$	$V_{D D}$	4.5		8.0	V
Input voltage	$V_{D D}{ }^{1}$	$V_{D D}{ }^{1}$		$2 / 3 V_{D D}$	8.0	V
	$V_{O D^{2}}$	$V_{00}{ }^{2}$		$1 / 3 V_{D D}$	8.0	V
Input high level voltage	$V_{\text {IH }}$	CE, CL, DI, $\overline{\mathrm{INH}}$	4.0		8.0	v
Input low level voilage	V_{12}	$\mathrm{CE}, \mathrm{CL}, \mathrm{Dt}, \overline{\mathrm{INH}}$	0		0.7	V
Recommended external resistance	$\mathrm{R}_{\mathrm{OSC}}$	OSC		47		$\mathrm{k} \Omega 2$
Recommended external capacitance	Cosc	OSC		1000		pF
Guaranteed oscillator range	losc	OSC	19	38	76	kHz
Data sotup time	$l_{\text {ds }}$	CL, DI: Figure 2	100			ns
Data hold time	t_{ch}	CL, DI: Figure 2	100			ns
CE wait time	t_{6}	CE, CL: Figure 2	100			ns
CE setup time	${ }_{\text {cs }}$	CE, CL: Figure 2	100			ns
CE hold time	${ }^{\text {ch }}$	CE, CL: Figure 2	100			ns
CL high level time	S OH	CL: Figure 2	100			ns
CL low level time	$\mathrm{taL}_{\text {ch }}$	CL: Figure 2	100			ns
Rise time	t_{r}	CE, CL, DI: Figure 2		100		ns
Fall time	4	CE, CL, DI: Figure 2		100		ns
FNH switching time	12	Figure 3	10			$\mu \mathrm{s}$

Electrical Characteristics at $\mathrm{Ta}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
Input high level current	${ }_{1 H}(1)$	CE, CL DI $\overline{\text { NH }}$; $\mathrm{V}_{1 H}=8 \mathrm{~V}$			5	$\mu \mathrm{A}$
Input low level current	$\mathrm{I}_{\mathrm{L}}(2)$	$\mathrm{CE}, \mathrm{CLDIINH} ; \mathrm{V}_{1 \mathrm{~L}}=0 \mathrm{~V}$			5	$\mu \mathrm{A}$
Oscillator frequency	tosc	OSC: $\mathrm{P}_{\text {OSC }}=47 \mathrm{k} \Omega, \mathrm{COSC}=1000 \mathrm{pF}$		38		kHz
Hysteresis	V_{H}	$\mathrm{CE}, \mathrm{CLDIINFi} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	0.3			V
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(1)$	S1 to S52; lout $(1)=-20 \mu \mathrm{~A}$	$V_{D D}-1.0$			V
Oulput low level valtage	V_{OL} (1)	S1 to S52; lout (1) $=20 \mu 4$			1.0	V
Oulput high level vollage	$\mathrm{VOH}^{(2)}$	COM1 to COM 3; $\operatorname{lout~}(2)=-100 \mu \mathrm{~A}$	$V_{D D}-1.0$			V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(2)$	COM 1 to COM3; $\operatorname{lout}(2)=100 \mu \mathrm{~A}$			1.0	V
Intermediate levei voltage*	$V_{\text {MID }}(1)$	1/2 bias, CON 1 to COM3; Iout (2) $= \pm 100 \mu \mathrm{~A}$	$1 / 2 V_{00} \pm 1.0$			V
	$\mathrm{V}_{\text {MID (2) }}$	1/3 bias, COM 1 to COM3; $\text { lout }_{\text {O }}(2)= \pm 100 \mu \mathrm{~A}$	$2 / 3 \mathrm{~V}_{00} \pm 1.0$			V
	$\mathrm{V}_{\text {MID }}(3)$	1/3 bies, COM 1 to СОM3; lout (2) $= \pm 100 \mu \mathrm{~A}$	$1 / 3 V_{00} \pm 1.0$			V
	$V_{\text {MID }}(4)$	1/3 bias, Si to S52; $\text { lout }(1)= \pm 20 \mu \mathrm{~A}$	$2 / 3 V_{D D} \pm 1.0$			V
	$V_{\text {M }}(5)$	1/3 bias, S1 10 S52; $\mathrm{I}_{\text {OUT }}(1)= \pm 20 \mu \mathrm{~A}$	$1 / 3 V_{D D} \pm 1.0$			\checkmark
Supply current	IOD (1)	Power saving mode			5	$\mu \mathrm{A}$
	${ }_{\text {lod }}(2)$	$\mathrm{f}=38 \mathrm{kHz}, 1 / 2$ bias, $\mathrm{V}_{D 0}=5 \mathrm{~V}$		400	800	$\mu \mathrm{A}$
	I_{DO} (3)	$t=38 \mathrm{kHz}, 1 / 3$ bias, $V_{D O}=5 \mathrm{~V}$		300	600	$\mu \mathrm{A}$
	IDO (4)	$1=38 \mathrm{kHz}, 1 / 2$ bias, $V_{D D}=8 \mathrm{~V}$		650	1300	$\mu \mathrm{A}$
	$\mathrm{IDO}^{(5)}$	$\mathrm{f}=38 \mathrm{kHz}, 1 / 3$ bias, $V_{D D}=8 \mathrm{~V}$		580	1200	$\mu \mathrm{A}$

Note: * Except the bias voltage generation divider resistors thal are built into $V_{D D^{1}}$ and $V_{D D}$. (See figure 1.)

Figure 1
When CL is stopped at the low level

When CL is stopped at the high level

Figure 2

Pin Assignment

Block Dlagram

PIn Functions

Pin	Pin No.	Function		Active	vo	Handing when unused
S 10 S52	9 to 52	Segment outputs that display the data transferred as serial data		-	0	Open
COM1 COM2 COM3	$\begin{aligned} & 53 \\ & 54 \\ & 55 \end{aligned}$	Common driver outpurs. The trame frequency is $\mathrm{f}_{\mathrm{O}}=\left(\mathrm{fosc}^{\prime} 384\right) \mathrm{Hz}$.		-	0	Open
OSC	61	Oscillator connection (for generating the common segment alternation waveform)		-	1	GND
CE	62	Serial data transter pins: connected to the microprocessor.	CE: chip enable	H	1	GND
CL	63		CL: synchronization clock	$\mathrm{L} \rightarrow \mathrm{H}$		
DI	64		DI: transfer data	-		
$\overline{\mathrm{NH}}$	57	Forcibly turns off the dispiay without regard for the internat da:a. Serial data can always be input, whatever the state of this pin.		L	1	GND
$V_{D D 1}$	58	Used for the $2 / 3$ bias voitage when bias voltages are provided externally. Connect to $V_{D D} 2$ when $1 / 2$ bias is used.		-	1	Open
$V_{D D}{ }^{2}$	59	Used for the $1 / 3$ bias voltage when bias voltages are provided externally. Connect to $V_{D O}{ }^{1}$ when $1 / 2$ bias is used.		-	1	Open

Serlal Data Transfer Format

1. Serial data

2. Data transfer format

3. When used with fewer than 156 segments
<Example> Using 63 segments
Segment allocation methodSixty three segments are allocated starting at D156

LC75850E, 75850W

- CCB address.............. 41
- D1 to D156 Display data
- DR............................Drive method selection bit

$$
1=1 / 3 \text { duty, } 1 / 3 \text { bias }
$$

$0=1 / 3$ duty, $1 / 2$ bias

- SC. .Segment drive/clear control bit
$1=$ Clear (Display clearing waveforms are output from common and segment pins.) $0=$ Drive (Normal drive)
- BU \qquad ..Normal mode/power saving mode control bit

1 = Power saving mode (The oscillator is stopped and the common and segment pins go to the ground level.)
$0=$ Normal mode

- * \qquad Don't care

Transferred Data/Output PIn Correspondence

-	COM3	COM2	COM1
S1	D1	D2	D3
S2	D4	D5	D6
S3	D7	D8	D9
S4	D10	D11	D12
S5	D13	D14	D15
S6	D16	D17	D18
S7	D19	D20	D21
S8	D22	D23	D24
S9	D25	D26	D27
S10	D28	D29	D30
S11	D31	D32	D33
S12	D34	D35	D36
513	D37	D38	D39
S14	D40	D41	D42
S15	D43	D44	D45
S16	D46	D47	D48
S17	D49	D50	D51
518	D52	D53	D54
S:9	D55	D56	D57
S20	D58	D59	D60
S21	D61	D62	D63
S22	D64	D65	D66
S23	D67	D68	D69
S24	070	D71	D72
S25	D73	D74	D75
S26	076	D77	D78

-	COM3	COM2	COM1
S27	D79	D80	D81
S28	D82	D83	D84
S29	D85	D86	D87
S30	D88	D89	D90
S31	D91	092	D93
S32	D94	D95	096
S33	D97	D98	D99
S34	D100	D101	D102
S35	D103	D104	D105
S36	D106	D107	D108
S37	D109	D110	D111
S38	0112	D113	D114
S39	D115	D116	D117
S40	D118	D119	D120
Sc1	D121	D122	D123
S42	D124	D125	D126
S43	0127	D128	D129
S44	D130	D131	D132
S45	D133	D134	D135
S46	D136	D137	D138
S47	D139	D140	D14:
S48	D142	D143	D144
S49	D145	D146	D147
S50	D148	D149	D150
551	D151	D152	D153
S52	D154	D155	D156

1/2 Blas, 1/3 Duty Drive TechnIque

1/2 Blas, 1/3 Duty Waveforms

INH and Display Control

Since the IC internal data (D1 to D156, DR, SC, and BU) is undefined when power is first applied, INH should be set low at the same time as power is applied, and data should be transferred from the microprocessor while $\overline{\mathbb{I N H}}$ is held low. When the data transfer has completed, set INH high. This will prevent meaningless displays at power on.

11Determined by the CR constant
12........ $10 \mu \mathrm{~s}$ (minimum)

Figure 3

Application Circuit Example 2

1/3 Bias (for use with normal size panels)

Appllcation CIrcult Example 3

1/3 Bias (for use with large panels)

- No products described or contained herein are intended for use in surgical implants, life-support systems aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the falure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

