DIGITAL 8000 SERIES TTL/MSI

TRUTH TABLE

ADDRESS			DATA INPUTS									OUTPUT		
A_{2}	A_{1}	A_{0}	17	I_{6}	I_{5}	14	13	12	11	10	INH	f	$\begin{gathered} 8230 \\ 8231 \\ f \end{gathered}$	$\frac{8232}{f}$
0	0	0	x	x	x	x	x	x	x	1	0	1	0	0
0	0	1	x	x	x	x	x	x	1	x	0	1	0	0
0	1	0	x	x	x	\times	x	1	x	x	0	1	0	0
0	1	1	x	x	x	x	1	x	x	x	0	1	0	0
1	0	0	x	x	x	1	x	x	x	x	0	1	0	0
1	0	1	x	x	1	x	x	x	x	x	0	1	0	0
1	1	0	x	1	x	x	x	x	\times	x	0	1	0	0
1	1	1	1	x	x	x	x	x	x	x	0	1	0	0
0	0	0	x	x	x	x	x	x	X	0	0	0	1	1
0	0	1	x	x	x	x	x	x	0	x	0	0	1	1
0	1	0	x	x	x	x	x	0	x	x	0	0	1	1
0	1	1	x	x	x	x	0	x	x	x	0	0	1	1
1	0	0	x	x	x	0	x	x	x	x	0	0	1	1
1	0	1	x	x	0	x	x	x	x	x	0	0	1	1
1	1	0	x	0	x	x	x	x	x	x	0	0	1	1
1	1	1	0	x	x	x	x	x	x	x	0	0	1	1
x	x	x	x	x	X	x	x	x	x	x	1	0	1	0

$x=$ don't care

DESCRIPTION

The 8-Input Digital Multiplexer is the logical equivalent of a single-pole, 8 position switch whose position is specified by a 3-bit input address.
The 8230 incorporates an INHIBIT input which, when low, allows the one-of-eight inputs selected by the address to appear on the f output and, in complement, on the f output. With the INHIBIT input high, the f output is unconditionally low and the \bar{f} output is unconditionally high. The 8230 is a functional and pin-for-pin replacement for the 9312.
The 8231 is a variation of the 8230 that provides open collector output $\overline{\mathrm{f}}$ for expansion of input terms. The 8232 is similar to the 8230 except in the effect of the INHIBIT input on the \bar{f} output. With the INHIBIT low, the selected input appears at the f output and, in complement, on the f output. With the INHIBIT input high, both the f and the \bar{f} output are unconditionally low.

LOGIC DIAGRAMS

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LIMITS				TEST CONDITIONS						NOTES
	MIN.	TYP.	MAX.	UNITS	A_{1}	A_{2}	A_{3}	INH	DATA INPUT In	OUTPUTS	
"1" Output Voltage, Output f	2.6	3.5		V	*	*	*	0.8V	2.0 V	-800 $\mu \mathrm{A}$	6, 11
Output $\overline{\mathrm{f}}$ (8230, 8232)	2.6	3.5		V	*	*	*	2.0 V	*	$-800 \mu \mathrm{~A}$	6, 11
"1" Output Leakage Current,									\checkmark		
Output \bar{f} (8231)			150	$\mu \mathrm{A}$	0.8V	2.0 V	2.0 V	2.0 V	0.6V		14
"0' Output Voltage			0.4	V	0.8V	0.8 V	0.8V	0.8V	0.8V	16 mA	7, 11
"1" Input Current											
Inputs An, I_{n}			40	$\mu \mathrm{A}$	4.5 V	4.5 V	4.5 V		4.5 V		
Input INH, 8230 \& 8231			80	$\mu \mathrm{A}$				4.5V			
Input INH, 8232			80	$\mu \mathrm{A}$				4.5 V			
'0' 0 Input Current											
$A_{n} \cdot I_{n} .1 N H$ (8230 \& 8231)	-0.1		-1.6	mA	0.4V	0.4 V	0.4V		0.4V		
INH, (8232)	-0.1		-3.2	mA				0.4V			

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

CHARACTERISTICS	LIMITS				TEST CONDITIONS						NOTES
	MIN.	TYP.	MAX.	UNITS	A	A	A	INH	DATA INPUT In	$\begin{array}{\|c\|c\|} \hline \text { OUTPUTS } \\ \ddagger \quad 7 \end{array}$	
Propagation Delay											
A_{n} to $\bar{f}(8230,8232)$		19	30	ns							8
A_{n} to \bar{f} (8231)		17	30	ns							8
I_{n} to $\bar{f}(8230,8232)$		11	20	ns							8
\bar{f} to f		10	15	ns							8
I_{n} to \bar{f} (8231)		13	24	ns							8
INH to $\bar{f}(8230,8231)$		18	30	ns							8
INH to f or \bar{f} (8232)		11	20	ns							8
Power Consumption/Supply Current											
8230, 8231			$\begin{aligned} & 250 / \\ & 47.7 \end{aligned}$	$\mathrm{mW} / \mathrm{mA}$	4.5 V	4.5 V	4.5V	4.5V	OV		13
8232			$\begin{aligned} & 2621 \\ & 50.0 \end{aligned}$	$\mathrm{mW} / \mathrm{mA}$	4.5 V	4.5 V	4.5V	4.5 V	OV		13
Output Short Circuit Current											
Output f	-20		-70	mA	OV	OV	OV	OV	4.5 V	OV	
Output $\overline{\text { f }} \mathbf{(8 2 3 0 , ~ 8 2 3 2) ~}$	-20		-70	mA	OV	OV	OV	OV	OV	OV	
Input Latch Voltage	5.5			V	10 mA		12				

*See Truth Table for Logical Conditions
NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current is defined as into the terminal referenced.
4. Positive logic definition: "UP" Level $=" 1 "$, "DOWN" Level $=" 0 "$.
5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
6. Output source current is supplied through a resistor to ground.
7. Output sink current is supplied through a resistor to V_{CC}
8. Refer to $A C$ Test Figures.
9. One $A C$ fan-out is defined as 50 pF .
10. Manufacturer reserves the right to make design and process changes and improvements.
11. By DC tests per the truth table, all inputs have guaranteed thresholds of 0.8 V for logical " 0 " and 2.0 V for logical " 1 ".
12. This test guarantees operation free of input latch-up over the specific operating power supply voltage range.
13. All I_{n} data inputs are at $O V V_{C C}=5.25 \mathrm{~V}$.
14. Connect an external 1 k resistor from V_{CC} to the output terminal for this test.

SCHEMATIC DIAGRAMS

*500 Ω Resistor on 8231 only.
Note: All inputs have diode clamping. All outputs have
Note: All inputs have diode clamping. All outputs have isolation diodes.

AC TEST FIGURE AND WAVEFORMS

NON-INVERTING PATHS

NOTES:

1. 5K, 30pF load includes test jigs and scope impedance.
2. Scope terminals to be $\leqslant 1 / 2^{\prime \prime}$ from package pins.
3. See truth table for logical conditions.

AC TEST CONDITIONS

STEP NO.	TYPE/S	$\begin{aligned} & \text { DELAY } \\ & \text { FROM-TO } \end{aligned}$	INPUTS				WAVE FORM TYPE
			10	l_{1}	A_{0}	INH	
1	ALL	A_{0} tof	0 V	$V_{\text {cc }}$	P.G.	0 V	C, D
2	ALL	\ln to \bar{f}	P. G.	0 V	0 V	0 V	C, D
3	ALL	f'to f*	P. G.	0 V	0 V	0 V	C, D
4	$\begin{aligned} & 8230 \\ & 8231 \end{aligned}$	INH to \bar{f}	V_{cc}	0 V	0 V	P. G.	A, B
5	8232	INH to \bar{f}	0 V	0 V	0 V	P. G.	C, D
6	8232	INH to f	V_{cc}	0 V	0 V	P. G.	C, D

NOTE: 1. P. G. = Pulse Generator

- Both \mathbf{f} and \bar{f} are simultaneously loaded.

TYPICAL APPLICATIONS

EXPANSION OF 8231 TO MULTIPLEXER 64 LINES

${ }^{-} f_{n}=f_{0}+f_{1}+f_{2} \ldots \ldots f_{7}$
True Output
All Outputs may be tied together
to drive $8 \times 16 \mathrm{~mA}$ (eight 1.6 mA F.O.)
or each Output may drive separately
ten 1.6mA F.O.

Note:
Each 8231 has 8 data inputs which are not shown.

