BINARY-TO-OCTAL DECODER BCD-TO-DECIMAL DECODER

8250 8251 8252

DIGITAL 8000 SERIES TTL/MSI

DESCRIPTION

The 8250, 8251 and 8252 are gate arrays for decoding and logic conversion applications.

The 8250 converts 3 lines of input to a one-of-eight output. The fourth input line (D) is utilized as an inhibit to allow use in larger decoding networks.

The 8251 and 8252 convert a 4 line input code (with

1-2-4-8 weighting) to a one-of-ten output as shown in the Truth Table.

The 8252 is a direct replacement for the 9301 with all outputs being forced high when a binary code greater than nine is applied to the inputs.

The selected output is a logic "0".

LOGIC DIAGRAMS

TRUTH TABLE

				OUTPUT STATES											
INPUT STATE			8250								8251		8252		
Α	В	С	D	0	1	2	3	4	5	6	7	8	9	8	9
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	0	1	1	1	34 1	1	1	1	1	1	1
0	1	0	0	1	1	0	1	1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	0	1	1	1	1	1	1	1	1.
0	0	1	0	1	1	1	1	0	1	1	1	1	1	1	1
1	0	1	0	1	1	1	1	1	0	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1
1	1	1	0	1	1	1	. 1	1	1	1	0	1	1	1	1
0	0	0	1	1	1	1	1	1	1	1	1	0	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0	1	0
0	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1
1	1	0	1	1	1	1	1	1	1	1	1	1	0	1	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1
0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LIMITS				A	В	С	D	OUTPUTS	NOTES
ONALIZOTE INSTITUTE	MIN.	TYP.	MAX.	UNITS		_	_			
"1" Output Voltage	2.6	3.5		v					-800	6, 10
"0" Output Voltage			0.4	V					16mA	7, 10
"1" Input Current A, B, C, D		(40	μА	4.5V	4.5V	4.5V	4.5V		
"0" Input Current A, B, C (8250, 8251)	-0.1	,	-1.2	mA	0.4V	0.4∨	0.4∨			
A, B, C, D (8252)	-0.1		-1.6	mA	0.4V	0.4V	0.4V	0.4V		
D (8251 Only)	-0.1		-1.2	mA				0.4V		
D (8250 Only)	-0.1		-1.0	mA				0.4V		

$T_A = 25^{\circ} C$ and $V_{CC} = 5.0 V$

CHARACTERISTICS		IMITS	A	В	C	D	OUTPUTS	NOTES		
UNANACTE NICTION	MIN.	TYP.	MAX.	UNITS	•					
Turn-on Delay t _{on}		20	35	ns						8
Turn-off Delay toff		20	35	ns						8
Power/Current Consumption		ł		1		}				j
(8251 Only)			135/25.7	mW/mA	5.25V	5.25V	5.25V	0V		12
(8250 Only)			125/23.8	mW/mA	5.25V	5.25V	5.25V	0∨		12
Input Latch Voltage	5.5	ļ	,	v	10mA	10mA	10mA	10mA		11
Output Short Circuit Current		İ							1	
Outputs 1 thru 9	-10		-55	mA	0V	0V	ov	ov	0∨	
Output 0	-10		-55	mA	5.0V	0V .	0V	0∨	0∨	
	j									

NOTES:

- All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
- All measurements are taken with ground pin tied to zero volts.
- Positive current flow is defined as into the terminal referenced.
- Positive logic definition:
 "UP" Level = "1". "DOWN" Level = "0".
- Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.

- Output source current is supplied through a resistor to ground.
- 7. Output sink current is supplied through a resistor to V_{CC} .
- 8. Refer to AC Test Figures.
- Manufacturer reserves the right to make design and process changes and improvements.
- Inputs for "1" and "0" output voltage test is per TRUTH table with threshold levels of 0.8V for logical "0" and 2.0V for logical "1".
- This test guarantees operation free of input latch-up over the specified operating power supply voltage range.
- 12. $V_{CC} = 5.25 \text{ volts.}$

SCHEMATIC DIAGRAM

AC TEST FIGURE AND WAVEFORMS

TYPICAL APPLICATIONS

ONE-OF-10 DECODER RESET O-STROBE vcc o-**DECADE COUNTER 8280** CLOCK O-C₁ BCD-TO-DECIMAL DECODER 8251 CONTROL LINES

