FAST CARRY EXTENDER

REFER TO PAGE 15 FOR A, F AND O PACKAGE PIN CONFIGURATIONS.

DIGITAL 8000 SERIES TTL/MSI

DESCRIPTION

The 8261 Fast Carry Extender is a monolithic gate array designed specifically to be used in conjunction with the 8260 Arithmetic Logic element. A 8260/8261 combination facilitates the implementation of the look-ahead technique in adder systems, thus considerably improving propagation times. The circuit structure of this array is of the familiar TTL type.

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LIMITS				TEST CONDITIONS				OUTPUTS	NOTES
					DRIVEN INPUTS		OTHER INPUTS			
	MIN.	TYP.	MAX.	UNITS	G,A,B	P	G,A,B	P		
"1" Output Voltage	2.6	3.5		v	2.0 V				$-800 \mu \mathrm{~A}$	6
"0" Output Voltage			0.4	v	0.8V		4.75V	4.75 V	9.6 mA	7
" 1 " Input Current G Input			40	$\mu \mathrm{A}$	4.5 V		$A=O V$			
A and B Inputs			40	$\mu \mathrm{A}$	4.5 V		$\mathrm{G}_{1}=0 \mathrm{~V}$			
P_{1} Input			40	$\mu \mathrm{A}$		4.5 V		OV		
P_{2} Input			80	$\mu \mathrm{A}$		4.5 V		OV		
P_{3} Input			120	$\mu \mathrm{A}$		4.5V		OV		
P_{4} and P_{5} Inputs			160	$\mu \mathrm{A}$		4.5V		OV		
" 0 " Input Current										
G, A and B			-1.6	mA	0.4V			5.25 V		
P_{1} Input			-1.6	mA		0.4V	OV	5.25 V		
P_{2} Input			-3.2	mA		0.4 V		5.25 V		
P_{3} input			-4.8	mA		0.4 V	OV	5.25 V		
P_{4} and P_{5} Inputs			-6.4	mA		0.4V	OV	5.25 V		
Power/Current Consumption		95/18.1	140/26.6	$\mathrm{mW} / \mathrm{mA}$			5.25 V	OV		12

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

CHARACTERISTICS	LIMITS				TEST CONDITIONS				OUTPUTS	NOTES
					DRIVEN INPUTS		OTHER INPUTS			
	MIN.	TYP.	MAX.	UNITS	G,A,B	P	G,A,B	P		
Turn-on Delay										
$G \text { to } C_{E}$		16	25	ns						
$P \text { to } C_{E}$		15	25	ns						8
$\mathrm{G} \text { to } \mathrm{C}_{\mathrm{E}}$		15	23	ns						8
P to C_{E}		8	15	ns						8
Input Latch Voltage	5.5			v	10 mA	10 mA	OV	OV		9
Output Short Circuit Current	-20		-70	mA	5.0 V	ov			OV	

NOTES:

1. All voltage and current measurements are referenced to the ground terminal. Input terminals not specifically referenced are tied to $V_{c c}$.
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current flow is defined as into the terminal referenced.
4. Positive logic definition:
"UP" Level = "1", "DOWN" Level $=$ " $0 "$.
5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
6. Output source current is supplied through a resistor to ground.
7. Output sink current is supplied through a resistor to $V_{C C}$.
8. Refer to AC Test Figure.
9. This test guarantees operation free of input latch-up over the specified operating power supply voltage range.
10. Manufacturer reserves the right to make design and process changes and improvements.
11. Input " 0 " thresholds for P_{1} through P_{5} inputs are guaranteed to be 0.7 volts.
12. $\quad V_{C C}=5.25 \mathrm{~V}$.

SCHEMATIC DIAGRAM

AC TEST FIGURE AND WAVEFORMS

SWITCH NO.	SWITCH POSITION							WAVEFORM TYPE
DES.	1	2	3	4	5	6	7	
A	2	1	1	1	1	1	1	
B	1	2	1	1	1	1	1	
G_{1}	1	1	2	1	1	1	1	
G_{2}	1	1	1	2	1	1	1	A and B
G_{3}	1	1	1	1	2	1	1	
G_{4}	1	1	1	1	1	2	1	
P_{4}								
STEP A	2	1	1	1	1	1	2	
STEP B	1	2	1	1	1	1	2	
STEP C	1	1	2	1	1	1	2	
STEP D	1	1	1	2	1	1	2	C and D
STEP E	1	1	1	1	2	1	2	
STEP F	1	1	1	1	1	2	2	

NOTES:

1. Scope terminals to be $\leqslant 1-1 / 2^{\prime \prime}$ from package pins.
2. Position 1 on all switches provides a logical " 1 ".
Position 2 on all switches provides a logical " 0 "
when input signal is not present.
3. All measurements are made at 1.5 volts level.

TYPICAL APPLICATION

16 BIT, $T_{A}=42 \mathrm{~ns}$, typical Fast Adder System (5 packages)

- Tied to $V_{\text {CC }}$ if not-true inputs are used, otherwise to ground. Unused 8261 pins should be tied to $V_{C C}$.

