DIGITAL 8000 SERIES TTL/MSI

DESCRIPTION

The 8280 Decade Counter and 8281 16-State Binary Counter are four-bit subsystems providing a wide variety of counter/storage register applications with a minimum number of packages.

The 8280 Decade Counter can be connected in the familiar BCD counting mode, in a divide-by-two and divide-by-five configuration or in the Bi-Quinary mode. The Bi-Quinary mode produces a square wave output which is particularly useful in frequency synthesizer applications.

The 8281 Binary Counter may be connected as a divide-bytwo, eight, or sixteen counter.

Both devices have strobed parallel-entry capability so that the counter may be set to any desired output state. A " 1 " or " 0 " at a data input will be transferred to the associated output when the strobe input is put at the " 0 " level. For additional flexibility, both units are provided with a reset input which is common to all four bits. A " 0 " on the reset line produces " 0 " at all four outputs.

The counting operation is performed on the falling (negativegoing) edge of the input clock pulse, however there is no restriction on the transition time since the individual binaries are level-sensitive.

LOGIC DIAGRAMS

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LIMITS				TEST CONDITIONS						NOTES
	MIN.	TYP.	MAX.	UNITS	DATA STROBE	DATA INPUTS	RESET	CLOCK	$\underset{2}{\text { CLOCK }}$	OUTPUTS	
"1" Output Voltage (All Outputs)	2.6	3.5		V	0.8V	2.0 V	2.0 V		Output A	$-800 \mu \mathrm{~A}$	7
"0' Output Voltage			0.4	V	0.8 V	0.8 V	0.8 V		Output	16 mA	8
(All Outputs)									A		
"0'0' Input Current											
$\overline{\text { Strobe }}$	-0.1		-1.6	mA	0.4V						
Data Inputs	-0.1		-1.2	mA		0.4V					
Reset	-0.1		-3.2	mA			0.4V				
Clock 1	-0.1		-3.2	mA				0.4 V			
Clock 2 (8280)	-0.1		-3.2	mA					0.4 V		
Clock 2 (8281)	-0.1		-1.6	mA					0.4V		
"1" Input Current											
$\overline{\text { Strobe }}$			40	$\mu \mathrm{A}$	4.5 V						
Data Inputs			40	$\mu \mathrm{A}$		4.5 V					
$\overline{\text { Reset }}$			80	$\mu \mathrm{A}$			4.5 V				
Clock 1			80	$\mu \mathrm{A}$				4.5 V			
Clock 2 (8280)			80	$\mu \mathrm{A}$					4.5 V		
Clock 2 (8281)			80	$\mu \mathrm{A}$					4.5 V		
Power/Current Consumption		184/35	236/45	$\mathrm{mW} / \mathrm{mA}$			OV	OV	0 V		12
Input Voltage Rating all Inputs	5.5			V	10 mA		10				
Output Short Circuit Current	-10		-60	mA	OV					OV	

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current flow is defined as into the terminal referenced.
4. Positive NAND logic definition:
"UP" Level = " 1 ", "DOWN" Level $=" 0 "$.
5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings
should the isolation diodes become forward biased.
6. Measurements apply to each output and the associated data input independently.
7. Output source current is supplied through a resistor to ground.
8. Output sink current is supplied through a resistor to V_{CC}.
9. Manufacturer reserves the right to make design and process changes and improvements.
10. Each input is tested separately.
11. Refer to AC Test Figures.
12. $V_{C C}=5.25 \mathrm{~V}$.

TYPICAL OUTPUT CHARACTERISTICS

SCHEMATIC DIAGRAM

AC TEST FIGURES AND WAVEFORMS

CLOCK MODE $\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\text {off }}$ DELAY

1. $t_{\text {on }}$ and $t_{\text {Off }}$ are measured from the clock input of each binary to the Q output of that binary.
2. Each Q output will be loaded with
the following load circuit:
input pulse:
Amplitude $=2.6 \mathrm{~V}$
P.W. $=30 \mathrm{~ns}$
$t_{r}=t_{f}=5 n \mathrm{~s}$.

AC TEST FIGURES AND WAVEFORMS (Cont‘d)

1. All resistor values are in ohms.
2. All capacitance values are in picofarads and include jig and probe capacitance. Capacitance as measured on Boonton Electronic Corporation Model 75A-S8 Capacitance Bridge or equivalent. $f=1 \mathrm{MHz}, V_{\text {ac }}=25 \mathrm{mV}$ rms.
3. All diodes are 1 N916.

MINIMUM STROBE PULSE WIDTH

MINIMUM RESET PULSE WIDTH

OUTPUTS

INPUT PULSE:
Amplitude $=2.6 \mathrm{~V}$
$t_{r}=t_{f}=5$ ns max.
Note: Outputs must be previously brought high by placing a " 0 " on the D strobe input. A pulse generator may be substituted for the switch.

AC TEST FIGURES AND WAVEFORMS (Cont'd)

STROBE/RESET RELEASE TIME

NOTES:

1. All resistor values are in ohms.
2. All capacitance values are in picofarads and include jig and probe capacitance. Capacitance as measured on Boonton Electronic Corporation Model 75A-S8 Capacitance Bridge or equivalent. $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{ac}}=25 \mathrm{mV}$ rms.

Clock, Strobe/Reset:
$\mathrm{Ampl}=2.6 \mathrm{~V}$
$t r=t f=5 \mathrm{~ns}$ max.
3. All diodes are 1 N916.

TYPICAL APPLICATIONS

