Features

- Full Eight-Bit Parallel Latching Buffer
- Bipolar 8282 Compatible
- Three-State Noninverting Outputs
- Propagation Delay 35ns Max.
- Gated Inputs:
- Reduce Operating Power
- Eliminate the Need for Pull-Up Resistors
- Single 5V Power Supply
- Low Power Operation $. ~ I C C S B=10 \mu A$
- Operating Temperature Ranges
- C82C82 . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- I82C82 . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- M82C82 . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Description

The Intersil 82C82 is a high performance CMOS Octal Latching Buffer manufactured using a self-aligned silicon gate CMOS process (Scaled SAJI IV). The 82C82 provides an eight-bit parallel latch/buffer in a 20 pin package. The active high strobe (STB) input allows transparent transfer of data and latches data on the negative transition of this signal. The active low output enable ($\overline{\mathrm{OE}})$ permits simple interface to state-of-the-art microprocessor systems.

Ordering Information

PART NUMBER	TEMP. RANGE	PACKAGE	PKG. NO.
CP82C82	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Ld PDIP	E20.3
IP82C82	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
CS82C82	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Ld PLCC	N20.35
IS82C82	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
CD82C82	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Ld CERDIP	F20.3
ID82C82	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
MD82C82/B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
8406701RA		SMD \#	
MR82C82/B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{array}{\|c} 20 \text { Pad CLCC } \\ \text { SMD \# } \end{array}$	J20.A
84067012A			

Pinouts

82 C 82 (PDIP, CERDIP)
TOP VIEW

82 C 82 (PLCC, CLCC)
TOP VIEW

TRUTH TABLE

STB	OE	DI	DO
X	H	X	Hi-Z
H	L	L	L
H	L	H	H
\downarrow	L	X	\dagger
H =	$=\text { Logic One }$		
=	$=$ Logic Zero		
x	= Don't Care		
$=$	$=$ Latched to Value of LastData		
$\mathrm{Hi}-\mathrm{Z}=$	$=$ High Impedance		
$\downarrow=$	= Neg. Transition		

PIN NAMES

PIN	DESCRIPTION
$\mathrm{DI}_{0}-\mathrm{DI}_{7}$	Data Input Pins
$\mathrm{DO}_{0}-\mathrm{DO}_{7}$	Data Output Pins
STB	Active High Strobe
$\overline{\mathrm{OE}}$	Active Low Output Enable

Functional Diagram

Gated Inputs

During normal system operation of a latch, signals on the bus at the device inputs will become high impedance or make transitions unrelated to the operation of the latch. These unrelated input transitions switch the input circuitry and typically cause an increase in power dissipation in CMOS devices by creating a low resistance path between V_{CC} and GND when the signal is at or near the input switching threshold. Additionally, if the driving signal becomes high impedance ("float" condition), it could create an indeterminate logic state at the input and cause a disruption in device operation.

The Intersil 82C8X Series of bus drivers eliminates these conditions by turning off data inputs when data is latched (STB = logic zero for the $82 \mathrm{C} 82 / 83 \mathrm{H}$) and when the device is disabled $(\overline{\mathrm{OE}}=$ logic one for $82 \mathrm{C} 86 \mathrm{H} / 87 \mathrm{H})$. These gated inputs disconnect the input circuitry from the V_{CC} and ground power supply pins by turning off the upper P -channel and lower N channel (see Figures 1, 2). No new current flow from V_{CC} to GND occurs during input transitions and invalid logic states from floating inputs are not transmitted. The next stage is held

FIGURE 16. 82C82/83H
to a valid logic level internal to the device.
DC input voltage levels can also cause an increase in ICC if these input levels approach the minimum V_{IH} or maximum V_{IL} conditions. This is due to the operation of the input circuitry in its linear operating region (partially conducting state). The 82C8X series gated inputs mean that this condition will occur only during the time the device is in the trans parent mode (STB = logic one). ICC remains below the maximum ICC standby specification of 10 mA during the time inputs are disabled, thereby, greatly reducing the average power dissipation of the 82C8X series devices

Typical 82C82 System Example

In a typical 80C86/88 system, the 82C82 is used to latch multiplexed addresses and the STB input is driven by ALE (Address Latch Enable) (see Figure 3). The high pulse width of ALE is approximately 100 ns with a bus cycle time of $800 \mathrm{~ns}(80 \mathrm{C} 86 / 88$ at 5 MHz$)$. The 82 C 82 inputs are active only 12.5% of the bus cycle time. Average power dissipation

FIGURE 17. 82C86H/87H GATED INPUTS

Application Information

Decoupling Capacitors

The transient current required to charge and discharge the 300 pF load capacitance specified in the 82C82 data sheet is determined by:

$\mathrm{I}=\mathrm{C}_{\mathrm{L}}(\mathrm{dv} / \mathrm{dt})$

(EQ. 1)
Assuming that all outputs change state at the same time and
where $t R=20 n s, V_{C C}=5.0 \mathrm{~V}, C_{L}=300 \mathrm{pF}$ on each of eight outputs.
$I=\left(8 \times 300 \times 10^{-12}\right) \times(5.0 \mathrm{~V} \times 0.8) /\left(20 \times 10^{-9}\right)=480 \mathrm{~mA} \quad(E Q .4)$
that dv/dt is constant;
$\mathrm{I}=\mathrm{C}_{\mathrm{L}}$
(EQ. 2)
(EQ. 3)

FIGURE 18. SYSTEM EFFECTS OF GATED INPUTS

Absolute Maximum Ratings
Thermal Information

AC Electrical Specifications $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 82)$;
$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$ (Note 1), Freq $=1 \mathrm{MHzT} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (182 C 82);
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M82C82)

	SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1)	TIVOV	Propagation Delay Input to Output	-	35	ns	Notes 2, 3
(2)	TSHOV	Propagation Delay STB to Output	-	55	ns	Notes 2, 3
(3)	TEHOZ	Output Disable Time	-	35	ns	Notes 2, 3
(4)	TELOV	Output Enable Time	-	50	ns	Notes 2, 3
(5)	TIVSL	Input to STB Setup Time	0	-	ns	Notes 2, 3
(6)	TSLIX	Input to STB Hold Time	25	-	ns	Notes 2, 3
(7)	TSHSL	STB High Time	25	-	ns	Notes 2, 3
(8)	TR, TF	Input Rise/Fall Times	-	20	ns	Notes 2, 3

NOTES:

1. Output load capacitance is rated at 300 pF for ceramic and plastic packages.
2. All AC parameters tested as per test circuits and definitions below. Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$.
3. Input test signals must switch between $\mathrm{V}_{\mathrm{IL}}-0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}+0.4 \mathrm{~V}$.

Timing Waveforms

Test Load Circuits

tivov, tSHOV, teLov

TEHOZ OUTPUT HIGH DISABLE

TEHOZ OUTPUT LOW DISABLE

NOTE: Includes stray and jig capacitance.

Burn-In Circuits

NOTES:

1. $\mathrm{V}_{\mathrm{CC}}=5.5 \pm 0.5 \mathrm{~V}$, $\mathrm{GND}=0 \mathrm{~V}$.
2. $\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V} \pm 10 \%$.
3. $\mathrm{V}_{\mathrm{IL}}=-0.2 \mathrm{~V}$ to 0.4 V .
4. $R_{1}=47 \mathrm{k} \Omega \pm 5 \%$.
5. $R_{2}=2.0 \mathrm{k} \Omega \pm 5 \%$.
6. $R_{3}=4.2 \mathrm{k} \Omega \pm 5 \%$.
7. $R_{4}=470 \mathrm{k} \Omega \pm 5 \%$.
8. $C_{1}=0.01 \mu \mathrm{~F}$ minimum.
9. $F_{0}=100 \mathrm{kHz} \pm 10 \%$.
10. $F_{1}=F_{0} / 2, F_{2}=F_{1 / 2}$.

Die Characteristics

DIE DIMENSIONS:
$118.1 \times 92.1 \times 19 \pm 1 \mathrm{mils}$
METALLIZATION:
Type: Si - Al
Thickness: $11 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$

GLASSIVATION:

Type: SiO_{2}
Thickness: $8 \mathrm{k} \AA ̊ \pm 1 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$2.00 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$

Metallization Mask Layout

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

