8-INPUT DIGITAL MULTIPLEXER

DIGITAL 8000 SERIES SCHOTTKY TTL/MSI

DESCRIPTION

The 8-Input Digital Multiplexer is the logical equivalent of a single-pole, 8 position switch whose position is specified by a 3-bit input address.

The 82S30 incorporates an INHIBIT input which, when low, allows the one-of-eight inputs selected by the address to appear on the foutput and, in complement, on the \bar{f} output. With the INHIBIT input high, the foutput is unconditionally low and the \bar{f} output is unconditionally high.

FEATURES

- SCHOTTKY-CLAMPED TTL STRUCTURE
- PNP INPUTS
- DIRECT OUTPUT INHIBIT
- 82S30 CAN REPLACE 9312 FOR HIGHER SPEED

TRUTH TABLE

ADDRESS			DATA INPUT									OUTPUT	
A_{2}	A_{1}	A_{0}	17	16	15	14	I_{3}	12	11	10	INH	f	$\begin{gathered} 82 S 30 \\ f \end{gathered}$
0	0	0	\times	x	x	x	x	x	x	1	0	1	0
0	0	1	x	x	x	x	x	x	1	x	0	1	0
0	1	0	x	x	x	x	x	1	x	x	0	1	0
0	1	1	x	x	x	x	1	\times	x	x	0	1	0
1	0	0	x	x	x	1	x	x	x	x	0	1	0
1	0	1	x	x	1	x	x	x	x	x	0	1	0
1	1	0	\times	1	x	x	x	x	x	x	0	1	0
1	1	1	1	x	x	x	x	x	x	x	0	1	0
0	0	0	x	x	x	x	x	x	x	0	0	0	1
0	0	1	x	x	x	x	x	x	0	x	0	0	1
0	1	0	x	x	x	x	\times	0	x	x	0	0	1
0	1	1	x	x	x	x	0	\times	x	x	0	0	1
1	0	0	x	x	x	0	x	x	x	x	0	0	1
1	0	1	x	x	0	x	x	x	x	x	0	0	1
1	1	0	x	0	x	x	x	x	x	x	0	0	1
1	1	1	0	x	0	0	1						
\times	\times	\times	\times	x	x	x	x	x	x	x	1	0	1

$x=$ don't care

LOGIC DIAGRAM

[^0]ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature and Voltage)

CHARACTERISTICS	LIMITS				TEST CONDITIONS						NOTES
	MIN	TYP	MAX	UNITS	A1	A_{2}	A_{3}	INH	DATA INPUT I_{n}	OUTPUTS	
"1" Output Voltage, Output f	2.7			V	*	*	*	0.8V	2.0 V	-1.0mA	6,11
Output ${ }^{\text {f }}$	2.7			V	*	*	*	2.0 V	*	-1.0mA	6,11
"0' Output Voltage			0.5	V	0.8 V	0.8V	0.8 V	0.8 V	0.8 V	20 mA	7,14
"1" Input Current											
Inputs An, I_{n}			10	$\mu \mathrm{A}$	4.5 V	4.5 V	4.5V		4.5 V		
Input INH			10	$\mu \mathrm{A}$				4.5 V			
'0'0'Input Current											
$A_{n}, I_{n}, 1 N H$			-400	$\mu \mathrm{A}$	0.5 V	0.5V	0.5V		0.5V		

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

CHARACTERISTICS	LIMITS				TEST CONDITIONS							NOTES
									DATA INPUT	OUTPUTS		
	MIN	TYP	MAX	UNITS	A	A	A	INH	In	f	\bar{f}	
Propagation Delay			20	ns								
$A_{n} \text { to } f$			17	ns								8
A_{n} to f Intof			12	ns								8
INH to \bar{f}			16	ns								8
Power Consumption/Supply Current			62	mA	4.5 V	4.5 V	4.5V	4.5 V	OV			11
Output Short Circuit Current												
Output f	-40		-100	mA	OV	OV	OV	OV	4.5 V	OV		
Output \bar{f}	-40		-100	mA	OV	OV	OV	OV	OV		OV	
Input Clamp Voltage	-1.2			V	-18	-18	-18	-18				12
					mA	mA	mA	mA				

*See Truth Table for Logical Conditions

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current is defined as into the terminal referenced.
4. Positive logic definition: "UP" Level $={ }^{\prime} 1_{1 "}$. "DOWN" Level $=$ " 0 ".
5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
6. Output source current is supplied through a resistor to ground.
7. Output sink current is supplied through a resistor to V_{CC}.
8. Refer to AC Test Figures.
9. Manufacturer reserves the right to make design and process changes and improvements.
10. By DC tests per the truth table, all inputs have guaranteed thresholds at 0.8 V for logical " 0 " and 2.0 V for logical " 1 ".
11. All I_{n} data inputs are at $O V, V_{C C}=5.25 \mathrm{~V}$.
12. Connect an external 1 K resistor from V_{CC} to the output terminal for this test.

AC TEST FIGURE AND WAVEFORMS

TEST TABLE															
$\begin{array}{\|c\|} \hline \text { TEST } \\ \text { NO. } \end{array}$	InPUTS													OUTPUTS	
	A_{0}	A_{1}	A_{2}	INH	10	1	12	13	14	T_{5}	16		17	E	F
1	PG	0	0	0	0	1	0	0	0	0	0	0	0	T	T
2	0	PG	0	0	0	0	1	0	0	0		0	0	T	
3	0	0	PG	0	0	0	0	0	1	0		0	0	T	
4	0	1	1	PG	0	0	0	0	0	1		0	0	T	
5	1	1	1	0	0	0	0	0	0	0		0	PG	T	

$$
\because 1 "=2.7 \mathrm{~V} \quad \because 0 "=\text { GROUND }
$$

NOTE:

1. A.C. TEST JIGS MUST NOT haVE ANY SWITCHES
2. A.C. TEST JIGS MUST HAVE LESS THAN $1 / 8$ INCH LEAD LENGTHS FROM PACKAGE PINS.

[^0]: $V_{C C}=(16)$
 GND $=(8)$
 () = Denotes Pin Numbers

