

8455 DUAL 4-INPUT NAND GATE DRIVER

The 8455 Dual 4-Input TTL NAND Gate Driver is used in high fan-out applications involving either AC or DC loads. The device implements the NAND function for positive logic (highest voltage level = " 1 ") and the NOR function for negative logic (lowest voltage level = " 1 ").

This element utilizes an active output structure which provides high AC noise immunity due to its low output impedance in both the " 1 " and " 0 " output states.

The current limiting resistor between the active pull-up and the output terminal features a parallel diode which displays extremely low impedance in the output " 1 " state. The design ensures optimum rise time when driving high capacitance loads encountered in high fan-out situations, and when driving AC binaries or long lines.

The values chosen for the collector and emitter resistors of the second stage transistor provide an optimum on-off relationship of the totem-pole output pair to minimize transient current spikes.

BASIC CIRCUIT SCHEMATIC

Section 4 of this handbook contains helpful usage rules and applications for the 8455.

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 12)

NOTES:

1. All voltage and capacitance measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open All measurements are taken with ground pin tied to zero volts. Positive NAND Logic Defínition: "UP" Level = " 1 ", "DOWN" Level $=" 0$ ".
Precautionary measures should be taken to ensure current limiting in accordance
with Absolute Maximum Ratings should the isolation diodes become forward biased. with Absolute Maximum Ratings should the isolation diodes
Measurements apply to each gate element independently.
2. Capacitance as measured on Boonton Electronic Corporation Model 75A-S8 Capacitance Bridge or equivalent. $\mathrm{f}=1 \mathrm{MHz}, \mathrm{Vac}_{\mathrm{ac}}=25 \mathrm{mV}$ rms. All pins not specifically referenced are tied to guard for capacitance tests. Output pins are left open.
3. Output source current is supplied through a resistor to ground.
4. Output sink current is supplied through a resistor to V_{cc}.
5. One DC fan-out is defined as 0.8 mA .
6. One AC fan-out is defined as 50 pf .
7. Manufacturer reserves the right to make design and process changes and improvements.
8. Detalled test conditions for AC testing are in Section 3.

