

Bratimanchane

ANALOG DIVIDER

FEATURES

- HICH ACCURACY: 0.25\% Maximum Error, 40:1 Denominator Range
- TWO-QUADRANT OPERATION

Dedicated Leg-Antilog Technique

- EASY TO USE

Laser-trimmed to Specified Accuracy No External Reslstors Needed

- LOW COST

- DIP PACKAcE

DESCRIPTION

The DIV100 is a precision two-quadrant analog divider offering superior performance over a wide range of denominator input. Its accuracy is nearly two orders of magnitude better than multipliers used for division. It consists of four operational amplifiers and logging transistors integrated into a single monolithic circuit and a laser-trimmed, thin-film resistor network. The electrical characteristics of these devices offer the user guaranteed accuracy without the need for external adjustment - the DIV100 is a complete, single package analog divider.

APPLICATIONS

- DIVISION
- SCUARE ROOT
- RATIOMETRIC MEASUREMENT
- PERCENTACE COMPUTATION
- Thansducer and bridce LINEARIZATION
- AUTOMATIC LEVEL AND GAIN CONTROL
- VOLTAGE CONTROLLED AMPLIFIERS
- ANALOG SIMULATION

For those applications requiring higher accuracy than the DIV100 specifies, the capability for optional adjustment is provided. These adjustments allow the user to set scale factor, feedthrough, and putputreferred offsets for the lowest total divider eror.
The DIV100 also gives the user a precision, tempera-ture-comipensated reference voltage for external use. Designers of industrial process control systems, analytical instruments, or biomedical instruméntation will find the DIV100 easy to use and also a low cost, but highly accurate solution to their analog divider applications.

SPECIFICATIONS

ELECTRICAL

PARAMETER	CONDITOS				CNIB0,			Cytore			WITS
		\square	1	- x	W\%	TYP	max	İi	$\times 7{ }^{\circ}$	4×8	
Thansfin fumction		$V_{0}=10 \mathrm{NO}$									
ACCURACY Total Error vs Temperature vs Supply Warm-up Time to Rated Performace			$\begin{gathered} 0.7 \\ 0.02 \\ 0.06 \\ 0.15 \\ 5 \end{gathered}$	$\begin{aligned} & 0.05 \\ & 0.05^{2} \\ & 0.2^{2} \end{aligned}$		0.3 \vdots	0.5		0.2	40.0	$\begin{gathered} \text { WFSO } \\ \% \text { FSO } \mathrm{C} \\ \% \text { FSO } \\ \% \text { FSO } \\ \text { Minutes } \end{gathered}$
AC PERFORMAMCE Sinellstiver Bandithth 0.5% Amplitude Eror 0.57° Vector Error Full-Power Bandwitith Stow Rate Setting Time Overtoad Fecovery	$\mathrm{O}=+10 \mathrm{~V}$ 8 Small-Signal Shinional $\begin{aligned} V_{0} & = \pm 10 V, I_{0}= \pm 5 \mathrm{~mA} \\ V_{0} & = \pm 10 \mathrm{~V}, \mathrm{I}_{0}= \pm 5 \mathrm{~mA} \\ \varepsilon & =1 \%, \Delta \mathrm{~V}_{0}=20 \mathrm{~V} \end{aligned}$ 50\% Oupit Ovirtixd		360 15 1000 30 2 15 4		\%		3				
```NPUT CHARACTERISICS Input Votiage Renge Numarator Denominatior Input Resistance```	$\begin{aligned} & \mathrm{N} \leq 1 \mathrm{D} \boldsymbol{x} \\ & \mathrm{O} \geq+2 \mathrm{EOnV} \\ & \text { Ether frout } \end{aligned}$	$\begin{aligned} & \pm 0 \\ & \pm 10 \end{aligned}$	25		-			*	-	$\because$ $\therefore$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{vo} \end{aligned}$
OUIPUT CHARACTEAISTICS   Ful-Scalacyput,   Rated Ouput   Vottage   current   Currem Limit   Positive   Negative	$\begin{aligned} & \mathrm{B}_{0}=\mathrm{smA} \\ & \mathrm{~V}_{\mathrm{o}}=\mathrm{o}^{10} \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & 15 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 20(2) \\ & 28^{(2)} \\ & \hline \end{aligned}$		*					$\cdots \begin{gathered} V \\ \mathrm{~mA} \\ \mathrm{~mA} \\ =m A \end{gathered}$
OUIPUT WOEE VOHTACE $\begin{aligned} & \mathrm{f}_{\mathrm{s}}=10 \mathrm{~Hz} \text { to } 10 \mathrm{KHz} \\ & \mathrm{D}=+10 \mathrm{~V} \\ & \mathrm{D}=+250 \mathrm{mV} \end{aligned}$	$\mathrm{N}=\mathrm{OV}$		$370$			*			"	$\cdots$	$\mu \mathrm{V}$ ms mVmss
REFERENCE VOLTACE CHARACT   Output Voltape   Inilial   vs Suppy   Temperature Ccetilician   Output Resistance	saistics,' $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{~m}$,   At $25^{\circ} \mathrm{C}$	6.50 m	$\begin{gathered} 6.8 \\ +25 \\ \pm 50 \\ 3 \end{gathered}$	7.12)	$\because$	$\cdots$	-	$\cdots$	$\because$	-	$\underset{\substack{\mathrm{CPm} \\ \mathrm{k} \Omega \\ \mathrm{c}^{\circ} \mathrm{C}}}{ }$
POWEA SUPFLY RECUHEEMENIS   Rated Votabe   Operating Range   Quisectm Curtent   Postive Supply   Negative Supply	Derated Pertorinance	$\pm 12$	$\begin{gathered} \pm 15 \\ 5 \\ 5 \\ \hline \end{gathered}$	$\pm 20$   $7{ }^{1919}$   10*)	+	$\therefore$	$\stackrel{+}{*}$	*		*	VDC   VDC   mA   mA
TEMPERATURE RAMGE   Specification   Operating Temperature   Storage	Derated Performance	$\begin{gathered} 0 \\ -25 \\ -40 \end{gathered}$		$\begin{array}{r} +70 \\ +85 \\ +85 \end{array}$	*		$\stackrel{+}{*}$	*		*	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

*Same as DIV100HP.
: NOTES: (1) FSO is the abbreviation for Full Scale Output. (2) This parameter is untested and is not guaranteed. This specifanion is estabished to a SO\% confidences

The information provided herein is belisved to be reliste; however, EURR-EROWN assumes no responsibity for ineccuracies or omissions. BURR-EROWN assumes no responsibility for the use of this information, and all use of such infomation shall be entraly at the user's own risk. Prices and spacifications are subiect to change without notice. No patem rights or licenses to any of the circuits descrbed herein are lmpled or granted to any third party. BURR-EnOwn does not authorize or warant any BURR-BROWN product for use in lie support devices andor systams.

## 

PIN CONFIGURATION

Bettom Vew		DP
$+V_{c c}$	01410	Gain Emor Adjust
Numerator (N) Input	01320	Output
Quput Oifet Adjust.	O 12.30	- $\mathrm{V}_{\text {ce }}$
N Input Ofiset Adjust	01140	D Input Ofliset Adjust
Common	$\bigcirc 1050$	Internatily Connected to Pin 1
Denominator (D) 'haput	0960	Internally Conrected to Pir 14
Fetererence Voltage	0870	Internally Commected to Pin 8

ORDERING INFORMATION

modet	TETPERTHURE Bancs	TOTAL MIIAL EAROR (\% FSO)
DIV100HP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	1.0
DIV100.1P	$0^{\circ} \mathrm{C}$ to + $700^{\circ} \mathrm{C}$	0.5
DIV100KP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0.25

## ABSOLUTE MAYMUM RATMAS

  NOTES: (1) See General Infomation section for diseussion. (2) For supply volitases less than $\pm 20 \mathrm{VDC}$, the abschute maximum input voltage is equal to the supply voliage. (3) Sher-eircuit may be to grouxd only. Ratiang applies $\mathbf{6}$ an ambient tomperature of $+38^{\circ} \mathrm{C}$ al rated supply voltage.

## PACKACE INFORMATOK

MODEL	PACKAGE	PACKACĖ DRAWNG Cumber
DIV100HP	14-Fin DIP	105
Divigut	14-Pin DIP	105
Diviookp	14-Pin DPP	105

NOTE: ( 1 ) For detailed drawing arid timension table, please see end of data sheet, or Appendix D of Eur-Erown IC Data Book.

## TYPICAL PERFORMANCE CURVES

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}= \pm 15 \mathrm{VDC}$, uniless otherwise specifed.


8
8
8



## 

TYPICAL PERFORMANCE CURVES (CONT)
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}= \pm 15 \mathrm{VDC}$, unless otherwise specified.







## Or, Gall Gustomer Senice a 1-000-stis-ctas (USA Onty)

TYPICAL PERFORMANCE CURVES (CONT)
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{VDC}$, unless otherwise specfied.


## 

## DEFINITIONS

## TRANSFER FUNCTION

The ideal transfer function for the DIV100 is:

$$
\mathrm{V}_{\mathrm{our}}=10 \mathrm{~N} / \mathrm{D}
$$

where: $\mathrm{N}=$ Numerator input voltage
$\mathrm{D}=$ Denominator input voltage
$10=$ Internal scate factor
Figure 1 shows the operating region over the :specified numerator and denominator ranges. Note that below the minimum denominator voltage ( 250 mV ) operation is undefined.


FIGURE 1. Operating Region.

## ACCUBACY

A Accuracy is specified as a percentage of full-scale output (ISO). It is derived from the total error specification.

## TOTAL ERROR

Total error is the deviation of the actual output from the ideal quotient 10N/D expressed in percent of FSO (10V); e.g., for the DIVIOOK:

$$
\mathbf{V}_{\text {out (ACTUAL) }}=\mathrm{V}_{\text {out (Desi) }} \pm \text { total error, }
$$

where: Total error $=0.25 \%$, FSO $=25 \mathrm{mV}$.
It represents the sum of all error terms normally associated with a divider: numerator nonlinearity, denominator nonlinearity, scale-factor error, output-refered numerator and denominator offsets, and the offiset due to the output amplifier. Individual errors are not specified because it is their sum that affects the user's application.

## SMALL-SIGNAL BANDWIDTH

Small-signal bandwidth is the frequency the output drops to $70 \%(-3 \mathrm{~dB})$ of its DC value. The input signal must be low enough in amplitude to keep the divider's output from becoming slew-rate limited. A rule-of-thumb is to make the output voltage $100 \mathrm{mVp}-\mathrm{p}$, when testing this parameter. Small-signal bandwidth is directly proportional to denominator magnitude as described in the Typical Performance Curves.

## 0\%\% ADPLMYOE ERAROR

At high frequencies the input-to-output relationship is a complex function that produces both a magnitude and vector error. The $0.5 \%$ amplitude error is the frequency at which the magnitude of the output drops $0.5 \%$ from its DC value.

## $0.57^{\circ}$ VECTOR ERROR

The $0.57^{\circ}$ vector error is the frequency at which a phase error of 0.01 radians occurs. This is the most sensitive measure of dynamic error of a divider.
s

## LINEABITY

Defining linearity for a nonlinear device may seem unnecessary; however, by keeping one input constant the output becomes a linear function of the remaining input. The denominator is the input that is held fixed with a divider. Nonlinearities in a divider add harmonic distortion to the output in the amount of:

Percent Distorion $\approx \frac{\text { Percent Nonlinearity }}{\sqrt{2}}$

## FEEDTHROUCH

Feedthrough is the signal at the output for any value of denominator within its rated range, when the numerator input is zero. Ideally, the output should be zero under this condition.

## GENERAL INFORMATION

 WIRING PRECAURONSIn order to prevent frequency instability due to lead inductance of the power supply lines, each power supply should be bypassed. This should be done by connecting a 10pF tantalum capacitor in parallel with a 1000 pF ceramic capacitor from the $+\mathbf{V}_{\mathbf{c c}}$ and $-\mathbf{V}_{\mathbf{c c}}$ pins to the power supply common. The connection of these capacitors should be as close to the DIV100 as practical.

## CAPACITIVE LOADS

Stable operation is maintained with capacitive loads of up to 1000pF, typically. Higher capacitive loads can be driven if a 22 O carbon resistor is comected in series with the DIV100's output.

## OVERLOAD PROTECTION

The DIV100 can be protected against accidental power supply reversal by putting a diode ( 1 N 4001 type) in series with each power supply line as shown in Figure 2. This precaution is necessary only in power systems that momentarily reverse polarity during turn-on or tum-off.
If this protection circuit is used, the accuracy of the DIV100 will be degraded by the power supply sensitivity specifica-

## 



FIGURE 2. Overload Protection Circuit.
tion. No other overload protection circuit is necessary. Inputs are intemally protected against overvoltages and they are current-limited by at least a $10 \mathrm{k} \Omega$ series resistor. The output is protected against short circuits to power supply common only.

## STATIC SENSTIVITY

No special handing is required. The DIV100 does not use MOS-type transistors. Furthermore, all external leads are protected by resistors against low energy electrostatic discharge (ESD).

## INTERNAL POWER DISGIPATIOX

Figure 3 is the thermal model for the-DIV100 where:
$\mathbf{P}_{\mathbf{D O}}=$ Quiescent power dissipation
$=1+V_{c c} I I_{\text {denescent }}+1-V_{c c} \mid I_{\text {quiscasint }}$
$\mathrm{P}_{\mathrm{DX}}=$ Worst case power dissipation in the output transistor
$=\mathrm{V}_{\mathrm{cc}}{ }^{2} / 4 \mathrm{R}_{\text {LoAD }}$ (for normal operation)
$=\mathrm{V}_{\mathrm{cc}} \mathrm{I}_{\text {outive thatr ( }}$ (for short-circuit) .
$\mathrm{T}_{\mathrm{p}}=$ Junction temperature (output loaded)
$\mathrm{T}_{3}{ }^{*}=$ Junction temperature (no load)
$\mathrm{T}_{\mathrm{c}}=$ Case temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature
$\boldsymbol{\theta}=$ Thermal resistance
This model is a multiple power source model to provide a more accurate simulation.
The model in Figure 3 must be used in conjuiction with the DIV100's absolute maximum ratings of intemal power dissipation and junction temperature to determine the derated power dissipation capability of the package.


FIGURE 3. DIV 100 Thermal Nodel.

As an example of how to use this model, consider this problem:

Determine the highest ambient temperature at which the DIV100 may be operated with a continuous short circuit to ground. $\mathrm{V}_{\mathrm{cc}}= \pm 15 \mathrm{VDC}$.
$\mathrm{P}_{\mathrm{DMAX})}=600 \mathrm{~mW} . \mathrm{T}_{\text {(MNX })}=+175^{\circ} \mathrm{C}$.
$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{ranAx}}-\mathrm{P}_{\mathrm{DQ}}\left(\theta_{2}+\theta_{3}\right)-\mathrm{P}_{\mathrm{DX} \text { (sicort-arcuit) }}$ $\left(\theta_{1}+\theta_{2}+\theta_{3}\right)$

$$
=175^{\circ} \mathrm{C}-18^{\circ} \mathrm{C}-119^{\circ} \mathrm{C}=38^{\circ} \mathrm{C}
$$

$\mathrm{P}_{\mathrm{DACIUAL})}=\mathrm{P}_{\mathrm{DQ}}+\mathrm{P}_{\mathrm{DX} \text { (SHoxt-circumi }} \leq \mathrm{P}_{\mathrm{DMAX})}$

$$
=255 \mathrm{~mW}+345 \mathrm{~mW}=600 \mathrm{~mW}
$$

The conclusion is that the device will withstand a shortcircuit up to $\mathrm{T}_{\mathrm{A}}=+38^{\circ} \mathrm{C}$ without exceeding either the $175^{\circ} \mathrm{C}$ or 600 mW absolute maximum limits.

## LMITING OUTPUT VOLTAEE SWING

The negative output voltage swing should be limited to $\pm 11 \mathrm{~V}$, maximum, to prevent polarity inversion and possible system instability. This should be done by limiting the input voltage range

## THEORY OF OPERATION

The DIV100 is a log-antilog divider consisting of four operational amplifiers and four logging transistors integrated into a single monolithic circuit. Its basic principal of operation can be seen by an analysis of the circuit in Figure 4.

The logarithmic equation for a bipolar transistor is:
ic: $\quad V_{B E}=V_{T} \ln \left(I_{C} \pi_{s}\right)$,
(1)
where: $\mathrm{V}_{\mathrm{T}}=\mathrm{kT} / \mathbf{q}$
$\mathrm{k}=$ Boltrmann's constant $=1.381 \times 10^{-23}$
$\mathrm{T}=$ Absolute temperature in degrees Kelvin
$\mathrm{q}=$ Electron charge $=1.602 \times 10^{-19}$
$\mathrm{I}_{\mathrm{c}}=$ Collector current
$\mathrm{I}_{\mathbf{s}}=$ Reverse saturation current


FIGURE, 4 One-Quadrant Log-Antilog Divider.



FIGURE 5. DIV100 Two-Quadranth LgerAntige Cicuif:

Applying equation (1) to the feur logging tansistors gives: For $Q_{3}:$

$$
V_{B E}=V_{E}-V_{E}=V_{T}\left[\ln \left(V_{\mathrm{EZF}} / R_{X}-\ln \mathrm{I}_{\mathrm{s}}\right]\right.
$$

This leads to:

$$
\mathrm{V}_{1}=-\mathrm{V}_{\mathrm{T}}\left[\ln \left(\mathrm{~V}_{\mathrm{REF}} / R_{\mathrm{X}}-\ln \mathrm{I}_{\mathrm{S}}\right]\right.
$$

$\begin{aligned} & \text { For } \mathrm{Q}_{2} \\ & \mathbf{V}_{\mathbf{t}}-\mathrm{V}_{2}=\mathrm{V}_{\mathrm{T}}\left(\ln \left(\mathrm{V}_{N} R_{\mathrm{N}}\right)-\ln \mathrm{I}_{\mathrm{S}}\right.\end{aligned}$
For $\mathrm{Q}_{3}$ :

$$
V_{3}=-V_{f} \ln \left(V_{0} / R_{0}\right)-\ln l_{1}
$$

We have now baken the logarithms of the inpur voltage $V_{t} s$ $V_{N}$, and $V_{D}$. Applying equation (1) to $Q_{A}$ gives:

$$
\mathrm{V}_{3}-\mathrm{V}_{2}=\mathrm{V}_{\mathrm{T}}\left[\ln \left(\mathrm{~V}_{\mathrm{O}} / R_{0}\right)-\ln \mathrm{I}_{\mathrm{k}}\right]
$$

Assume $\mathrm{V}_{\mathrm{T}}$ and $\mathrm{I}_{\mathrm{s}}$ are the same for all four ransistons (a reasonable assumption with a monolithic IC). Solving this last equation in terms of the previously defined variables and taking the antilogaritim of the result yields:

$$
\begin{equation*}
V_{0}=\frac{V_{\mathrm{REF}} V_{\mathrm{N}} \mathrm{R}_{\mathrm{O}} \mathrm{R}_{\mathrm{D}}}{\mathrm{~V}_{\mathrm{D}} \mathrm{R}_{\mathrm{X}} R_{\mathrm{N}}} \tag{2}
\end{equation*}
$$

In the DIV100 $\mathrm{V}_{\mathrm{REF}}=6.6 \mathrm{~V}, \mathrm{R}_{\mathrm{d}^{2}=R_{\mathrm{N}}}=\mathrm{R}_{\mathrm{D}}$ and $\mathrm{R}_{\mathrm{x}}$ is such that the transfer function is:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{o}}=10 \mathrm{ND} \tag{3}
\end{equation*}
$$

where: $\mathrm{N}=$ Numertar Voltage

$$
\mathrm{D}=\text { Denominator Voltage }
$$

Figure 5 is a more detailed circuit diagram for the DIV100. In addition to the circuitry included in Figure 3, it also shows the resistors ( $\mathbf{R}_{3}, \mathbf{R}_{8}, \mathbf{R}_{3}, \mathbf{R}_{9}$, and $\mathbf{R}_{10}$ ) used for level-shifting. This converts the DIV100 to a two-quadrant divider.
The implementation of the transfer function in equation (3) is done using devices with real limitations. For example, the value of the D input must always be positive. If it isn't, $\mathrm{Q}_{\mathbf{3}}$ will no-longer conduct, $\mathrm{A}_{3}$ will become open loop, and its output and the DIV100 output will saturate, This limitation is further restricted in that if the D input is less than +250 mV the errons will become substartial If will still function, but its accuracy will be less.

Still another limitation is that the value of the N input must always be equal to or less that the absolute value of the $D$ input: From equation (3) it can be seen that if this limitation is not met, $\mathrm{V}_{\mathrm{o}}$ will try to be greater than the 10 V outpint voltage limit of $\mathrm{A}_{4}$.
A limitation that mas not be obriousisitheeffet of sonneq resistape, If the numerator or denominator inputs are divion from a source with more than 109 of output resistance, the resulant voltage diviter will cause a significhat output error. This voltage divider is formed by the source resistance and the DV100 inputrestitance. With Psousds $=109$ and $R_{\text {mur }}$ (ovion $=25 \mathrm{k} \Omega$ an error of $0.04 \%$ results. This means that the best pesformarice of the DIV100 is sbtained by driving its inputs from operational amplifiers.
Note that the reference voltage is brofght out to pins 7 and 8. This gives the user a precision, tomperathe-compensated reference for extemal use. Its open-cirguit voltage is +6.8 VDC , typically. Its Thevenin equivalent resistance is 3ko. Since the output resistance is a relaively high value, an opentionat amplifier is necessary to buffer thisesource as shown in Figure 6. The external amplifier is necessary because current drawn through the $3 \mathbf{k} \boldsymbol{\rho}$ resistor will effect the DIV100 senle factor.



FIGURE 6. Buffered Precision Voltage Referuge.

## OPTION ADJUSTMENTS

Figure 7 shows the connections to make to adjust the DIV100 for significantly better accuracy over its 40 -to-1 denominator range.

## 

The adjustment procedure is:

1. Begin with $\mathbf{R}_{1}, \mathbf{R}_{2}$ and $\mathbf{R}_{3}$ set to their mid-position.
2. With $|\mathbb{N}|=D=10.000 \mathrm{~V}$, $\pm 1 \mathrm{mV}$, adjust $\mathrm{R}_{1}^{,}$for $\mathbf{V}_{\mathbf{0}}=+10.000 \mathrm{~V}, \pm 1 \mathrm{mV}$. This sets the scale factor.
3. Set $\mathbf{D}$ to the minimum expected denominator voltage. With $N=-D$, adjust $R_{2}$ for $V_{0}=-10.000 \mathrm{~V}$. This adjusts the output referred denominator ofiset errors.
4. With D still at its minimum expected value, make $\mathrm{N}=$ D. Adjuist $\mathrm{K}_{3}$ for $\mathrm{V}_{0}=10.000 \mathrm{~V}$. This adjusts the output referred offset errors.
5. Repeat steps $2-4$ until the best accuracy is obtained.


FIGURE 7. Connection Diagram for Optional Adjustments.

## TYPICAL APPLICATIONS

CONNECTION DIAERAM
Figure 8 is applicable to each application discussed in this section, except the square root mode.


FIGURE 8. Connection Diagram-Divide Mode.

## RATIOMETRIC MEASUREMENT

The DIV100 is useful for ratiometric measurements such as efficiency, clasticity, stress, strain, percent distortion, impedance magnitude, and fractional loss or gain. These ratios may be made for instantaneous, average, RMS, or peak values.

The advantage of using the DIV100 can be illustrated from the example shown in Figure 9.
The LVDT ( Linear Variable Differential Transformer) weigh cell measures the force exerted on it by the weight of the material in the container. Its output is a voltage proportional to:

$$
\mathrm{W}=\frac{\mathrm{Fg}}{\mathrm{a}}
$$

where: $\mathbf{W}=$ Weight of material
F = Force
$\mathrm{g}=$ Acceleration due to gravity
$\mathrm{a}=$ Acceleration (acting on body of weight $\mathbf{W}$ )


FIGURE 9. Weighing System - Fractional Loss.
In a fractional loss weighting system, the initial value of the material can be determined by the volume of the container and the density of the material. If this value is then held on the D-input to the DVV100 for some time interval, the DIV100 output will be a measure of the instantaneous fractional loss:

$$
\text { Loss }(\mathrm{L})=\mathbf{W}_{\text {Mstanthesous }} / \mathbf{W}_{\text {RIIIN }}
$$

Note that by using the DIV100 in this appplication the common physical parameters of $g$ and a have been eliminated from the measurement, thus eliminating the need for precise system calibration.
The output from a ratiometric measuring system may also be used as a feedback signal in an adaptive process control system. A common application in the chemical industry is in the ratio control of a gas and liquid flow as illustrated in Figure 10.

## PERCENTAGE COMPUTATION

A variation of the direct ratiometric measurements previously discussed is the need for percentage computation. In Figure 11, the DIV100 output varies as the percent deviation of the measured variable to the standard.

## TME AVERACING

The circuit in Figure 12 overcomes the fixed averaging interval and crude approximation of more conventional time averaging schemes.

## BRIDCE LINEARIZATION

The bridge circuit in Figure 13 is fundamental to pressure, force, strain and electrical measurements. It can have one or

Furlinmadiata Issibhice, Aumect Your Loul Salesperson


FIGURE 10. Ratio Control of Water to Hydrochloric Gas.
more active amms whose resistance is a function of the physical quantity, propenty, or condition that is being measured; e.g., force of compression. For the sake of explanation, the bridge in Figure 13 has only one active arm.
The differential output voltage $V_{B A}$ is:

$$
V_{B A}=V_{B}-V_{A} \frac{-V_{E X} \delta}{2(2+\delta)}
$$

a nonlinear function of the resistance change in the active arm. This ponlinearity limits the useful span of the bridge to peihaps $\mathbf{~} 10 \%$ variation in the measured parameter.
Bridge linearization is accomplished using the circuit in Figure 14. The instrumentation applifier converts the difier: ential output to a single-ended yoltage needed to drive the divider. The voltage-divider string makes the numerator and denominator voltages:

$$
\begin{aligned}
& \mathrm{N}=\frac{-\mathrm{V}_{\mathrm{Ex}} \delta \mathrm{R}_{\mathrm{N}}}{\left(2 \mathrm{R}_{1}+3 \mathrm{R}_{\mathrm{D}}\right)(2+\delta)} ; \text { and, } \\
& \mathrm{D}=\frac{2 \mathrm{~V}_{\mathrm{Ex}} \mathrm{R}_{\mathrm{D}}}{\left(2 \mathrm{R}_{1}+3 \mathrm{R}_{\mathrm{D}}\right)(2+\delta)}, \text { respectively, }
\end{aligned}
$$

where: $\quad R_{N_{N}}=$ DIV100 numerator input resistance $\mathrm{R}_{\mathrm{D}}=$ DV100 denominator input resistance
Applying these voltages to the DV1Q0 trapefer functiona gives:

$$
v_{o}=10 N / D=\frac{\left(2 R_{1}+3 R_{w}\right)\left(R_{w} \delta\right) 10}{\left(2 R_{1}+3 R_{w}\right)\left(2 R_{i}\right)}
$$

which reduces to:

$$
v_{0}=-5 \delta
$$

if the divider's input resistantes are equal.

## 

The nonlinearity of the bridge has been eliminated and the circuit output is independent of variations in the excitation voltage.

## AUTOMATIC GAN CONTROL

A simple AGC circuit using the DIV100 is shown in Figure 15. The numerator voltage may vary both positive and negative. The divider's output is half-wave rectified and filtered by $D_{1}, R_{y}=$ ond $C_{7}$, It is then compared to the DC reference voltage. If a difference exists, the integrator sends a control signal to the denominator input to maintain a constant output, thus compensating for input yolfage changes.

$$
\therefore \quad \therefore \quad \text { isi }
$$

, , , ...
YOLTAEECONTROLLED FILTER,
Figure 16 shows how to use the DIV100 in the feedback Figure 16 shows how to use the DIV100 in the feedback
loop of an integrator to form a volsage-contoila fitet. The



FIGURE 16. Voltage-Controlled Filter.

SQUARE ROOT


FIGURE 17. Connection Diagram for Squate Root Mode.

FIGURE 15. Automatic Gain Control Circuit.
transfer function is:
circuit may be used as a single-pole low-pass active filter whose cutoff frequency is linearily proportional to the circuit's control voltage.

