
# DP83959

DP83959 8-Port Lite Ethernet Repeater Interface Controller



Literature Number: SNLS027A

October 1997

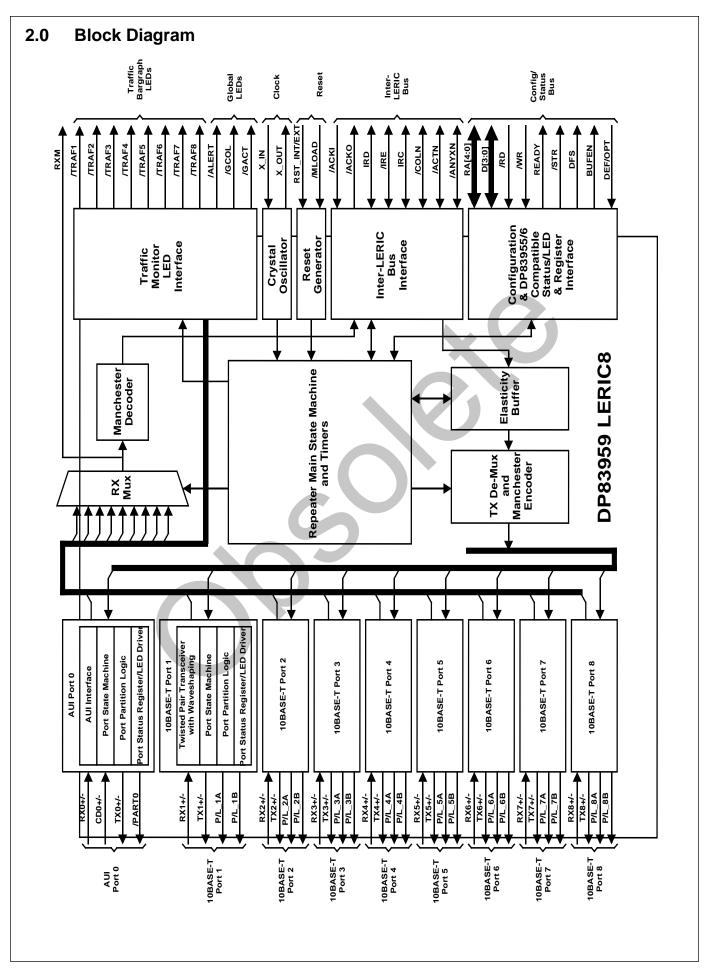


# **DP83959** 8-Port Lite Ethernet Repeater Interface Controller

# **General Description**

1.0

The DP83959 8-Port Lite Ethernet Repeater Interface Controller (LERIC8) is a single chip solution for unmanaged 10BASE-T Ethernet repeater (hub) products. By integrating electronics needed to support eight 10BASE-T ports, a full level/drive compatible AUI port for a backbone connection, and an internal power on reset circuit, a LERIC8 based design requires only the addition of a few passive components: crystal, transformers, connectors and a power source.

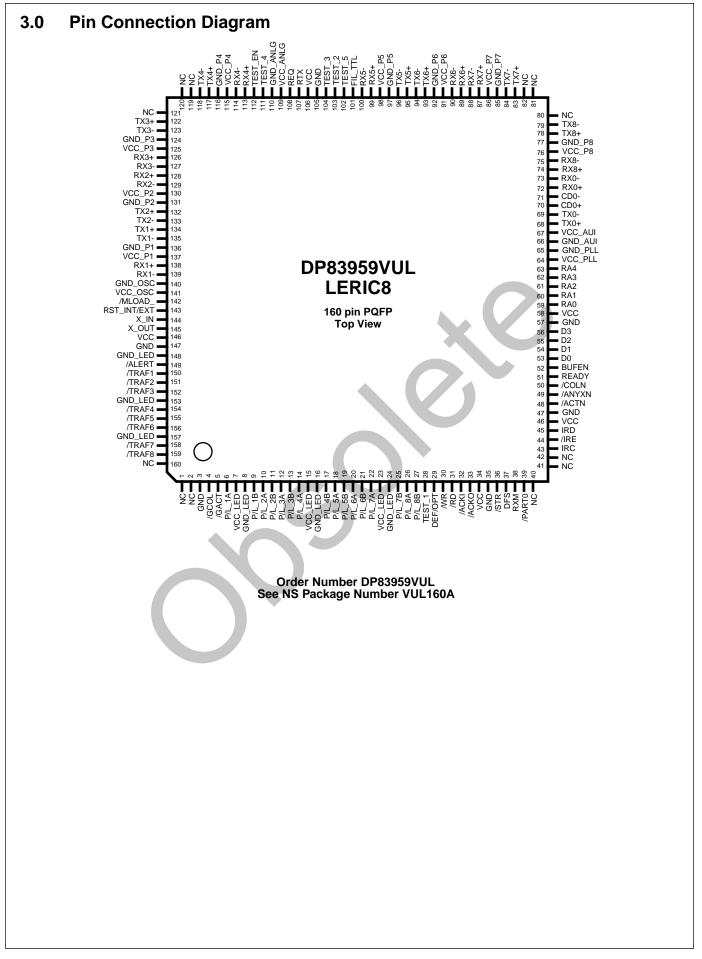

The LERIC8 provides on-chip LED drivers that connect directly to LEDs via series resistors. In addition to the Link OK, Port Partition, Global Activity and Global Collision LED outputs, the LERIC8 provides an on chip network traffic level monitor circuit with 8 LED outputs to drive a bargraph type display.

The LERIC8 also provides an LED and Inter Repeater Bus interface that is compatible with the DP83955/6 LERIC™ products.

# Features

- Fully IEEE 802.3 Ethernet Repeater compliant
- Eight IEEE 802.3 10BASE-T compliant ports with on-chip transmit filters
- One IEEE 802.3 compatible AUI port
- Direct drive status LED outputs
- Network traffic level monitor with direct drive LED outputs
- Automatic internal power-on reset function. External TTL compatible reset pin provided for device testing if required
- Inter-LERIC<sup>™</sup> bus for cascading up to 3 devices on a single board
- Register/LED status interface compatible with DP83955/6 LERIC<sup>™</sup> products
- Single 20 MHz crystal or external 20 MHz oscillator module operation
- Single 5V supply
- 160 pin PQFP package

#### System Diagram Status LEDs (Optional) 20MHz Inter Repeater Bus Network Traffic Bargraph Oscillator Per 10BASE-T Port Link & Partition (Optional) Alert (High Traffic or Long Partition) **AUI Port Partition** or Crystal **Global Activity, Global Collision DP83959 LERIC8** 8-Port Lite Ethernet Repeater Interface Controller Transformer Transformer Transformer Transformer Transforme Transforme Transforme Transforme Transforme AUI 10BASE-T 10BASE-T 10BASE-T 10BASE-T 10BASE-T 10BASE-T 10BASE-T 10BASE-T Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port TRI-STATE<sup>®</sup> is a registered trademark of National Semiconductor Corporation. LERIC<sup>™</sup> and Inter-LERIC<sup>™</sup> are trademarks of National Semiconductor Corporation.




# **Table of Contents**

| 1.0 | Syste | System Diagram1                                 |  |  |  |  |  |  |
|-----|-------|-------------------------------------------------|--|--|--|--|--|--|
| 2.0 |       | c Diagram                                       |  |  |  |  |  |  |
| 3.0 | Pin C | Connection Diagram4                             |  |  |  |  |  |  |
| 4.0 | Pin D | escriptions                                     |  |  |  |  |  |  |
|     | 4.1   | AUI Port (Port 0)5                              |  |  |  |  |  |  |
|     | 4.2   | Twisted Pair Ports (Ports 1 - 8)5               |  |  |  |  |  |  |
|     | 4.3   | Status LED Interface7                           |  |  |  |  |  |  |
|     | 4.4   | Inter-LERIC Bus Interface9                      |  |  |  |  |  |  |
|     | 4.5   | Clock Interface                                 |  |  |  |  |  |  |
|     | 4.6   | Register/Configuration Interface11              |  |  |  |  |  |  |
|     | 4.7   | Miscellaneous Pins12                            |  |  |  |  |  |  |
|     | 4.8   | Power and Ground Pins13                         |  |  |  |  |  |  |
| 5.0 | Func  | tional Description14                            |  |  |  |  |  |  |
|     | 5.1   | Repeater Main State Machine & Timers14          |  |  |  |  |  |  |
|     | 5.2   | Port State Machines14                           |  |  |  |  |  |  |
|     | 5.3   | Receive Multiplexer14                           |  |  |  |  |  |  |
|     | 5.4   | Manchester Decoder 1                            |  |  |  |  |  |  |
|     | 5.5   | Elasticity Buffer14                             |  |  |  |  |  |  |
|     | 5.6   | Transmit DE-Multiplexer & Manchester Encoder 15 |  |  |  |  |  |  |
|     | 5.7   | Inter-LERIC Bus Interface15                     |  |  |  |  |  |  |
|     | 5.8   | Clock Interface15                               |  |  |  |  |  |  |
|     | 5.9   | Reset Interface                                 |  |  |  |  |  |  |
|     | 5.10  | Traffic Monitor LED Interface                   |  |  |  |  |  |  |
|     | 5.11  | Port Status LEDs18                              |  |  |  |  |  |  |
|     | 5.12  | Configuration/Register Interface                |  |  |  |  |  |  |
|     | 5.13  | Min/Max Mode LED Interface19                    |  |  |  |  |  |  |
|     | 5.14  | AUI Port 019                                    |  |  |  |  |  |  |
|     | 5.15  | 10BASE-T Ports 1-8                              |  |  |  |  |  |  |

| ~ ~  |       |                                               |
|------|-------|-----------------------------------------------|
| 6.0  |       | C8 Registers 22                               |
|      | 6.1   | Register Address Map                          |
|      | 6.2   | LERIC8 Status Register                        |
|      | 6.3   | Port 0 (AUI) Status/Configuration Register 24 |
|      | 6.4   | Ports 1-8 (10BASE-T) Status/Configuration     |
|      |       | Registers                                     |
| 7.0  | Syste | m Considerations                              |
|      | 7.1   | Cascading                                     |
|      | 7.2   | IEEE Conformance                              |
| 8.0  | DC Sp | pecifications                                 |
| 9.0  | Switc | hing Characteristics                          |
|      | 9.1   | Port Arbitration                              |
|      | 9.2   | Receive - AUI Port                            |
|      | 9.3   | Receive - 10BASE-T Ports                      |
|      | 9.4   | Transmit - AUI Port                           |
|      | 9.5   | Transmit - 10BASE-T Ports                     |
|      | 9.6   | Collision - AUI Port                          |
|      | 9.7   | Collision - 10BASE-T Ports                    |
|      | 9.8   | Collision - All Ports - Inter-LERIC Bus       |
|      | 9.9   | Collision - All Ports - One Port Left         |
|      | 9.10  | Reset                                         |
|      | 9.11  | LED Strobe                                    |
|      | 9.12  | Register Read                                 |
|      | 9.13  | Register Write                                |
|      | 9.14  | Inter-LERIC Bus (Packet Output)               |
|      | 9.15  | Inter-LERIC Bus (Packet Input)                |
| 10.0 | AC Ti | ming Test Conditions                          |
|      | 10.1  | General Test Conditions                       |
|      | 10.2  |                                               |
| 11.0 |       | cal Dimensions 38                             |

www.national.com



# 4.0 Pin Descriptions

Key to Pin Type:

# 4.1 AUI PORT (PORT 0)

I/O = TTL Compatible Input/Output
I/O (O.D.) = TTL Compatible Input/Open Drain Output
TPO = Twisted Pair Interface Compatable Output
TPI = Twisted Pair Interface Compatable Input
AI = Analog Input

| Signal Name | Туре       | Pin # | Description                                                                                                                                                                                                                                             |
|-------------|------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TX0+        | O<br>(ECL) | 68    | <b>AUI Transmit +:</b> The AUI transmit path includes National Semiconductor's patented low power dissipation differential drivers that do not need external load resistors. This output should be connected directly to the AUI isolation transformer. |
| TX0-        | O<br>(ECL) | 69    | <b>AUI Transmit -:</b> The AUI transmit path includes National Semiconductor's patented low power dissipation differential drivers that do not need external load resistors. This output should be connected directly to the AUI isolation transformer. |
| RX0+        | l<br>(ECL) | 72    | <b>AUI Receive +:</b> This input should be terminated with $39\Omega$ to GND via a series DC blocking capacitor (shared with RX0-). Refer to Figure 8.                                                                                                  |
| RX0-        | l<br>(ECL) | 73    | <b>AUI Receive -:</b> This input should be terminated with $39\Omega$ to GND via a series DC blocking capacitor (shared with RX0+). Refer to Figure 8.                                                                                                  |
| CD0+        | l<br>(ECL) | 70    | <b>AUI Collision Detect +:</b> This input should be terminated with $39\Omega$ to GND via a series DC blocking capacitor (shared with CD0-). Refer to Figure 8.                                                                                         |
| CD0-        | l<br>(ECL) | 71    | <b>AUI Collision Detect -:</b> This input should be terminated with $39\Omega$ to GND via a series DC blocking capacitor (shared with CD0+). Refer to Figure 8.                                                                                         |

# 4.2 TWISTED PAIR PORTS (PORTS 1 - 8)

| Signal Name | Туре | Pin # | Description                                                                                                                                                                                                                                                                                 |
|-------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REQ         | AI   | 108   | <b>Equalization Resistor:</b> A resistor connected between this pin and GND or $V_{CC}$ adjusts the equalization step amplitude on the 10BASE-T Manchester encoded transmit data for all eight 10BASE-T ports. No resistor is required for operation with cable length of up to 100 meters. |
| RTX         | AI   | 107   | <b>Extended Cable Resistor:</b> A resistor connected between this pin and GND or $V_{CC}$ adjusts the amplitude of the differential transmit outputs for all eight 10BASE-T ports. No resistor is required for operation with cable length of up to 100 meters.                             |

The values of the resistor/capacitor parallel source impedance matching networks connected to each of the 10BASE-T transmit outputs will depend upon PCB layout factors (such as track length, width, route etc.) and will have to be determined for each design. Preliminary laboratory work suggests that values of  $13.5\Omega$  and 820 pF are appropriate in order to meet IEEE 802.3 specifications and EMI requirements - these values should be taken as a starting point for investigation. Refer to Figure 9.

| Signal Name  | Туре | Pin #    | Description                                                                                                                                                                                                                        |  |  |
|--------------|------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| TX1 <u>+</u> | TPO  | 134, 135 | <b>Port 1 Transmit:</b> 10BASE-T transmitter output - requires a series source impedance matching network consisting of a resistor and capacitor in parallel. The values of these components will be application specific.         |  |  |
| RX1 <u>+</u> | TPI  | 138, 139 | <b>Port 1 Receive:</b> 10BASE-T receiver input - requires a $50\Omega$ receive termination.                                                                                                                                        |  |  |
| TX2 <u>+</u> | TPO  | 132, 133 | <b>Port 2 Transmit:</b> 10BASE-T transmitter output - requires a series source impedance matching network consisting of a resistor and capacitor in parallel. The values of these components will be application specific.         |  |  |
| RX2 <u>+</u> | TPI  | 128, 129 | <b>Port 2 Receive:</b> 10BASE-T receiver input - requires a $50\Omega$ receive termination.                                                                                                                                        |  |  |
| TX3 <u>+</u> | TPO  | 122, 123 | <b>Port 3 Transmit:</b> 10BASE-T transmitter output - requires a series source impedance matching network consisting of a resistor and capacitor in parallel. The values of these components will be application specific.         |  |  |
| RX3 <u>+</u> | TPI  | 126, 127 | <b>Port 3 Receive:</b> 10BASE-T receiver input - requires a $50\Omega$ receive termination.                                                                                                                                        |  |  |
| TX4 <u>+</u> | TPO  | 117, 118 | <b>Port 4 Transmit:</b> 10BASE-T transmitter output - requires a series source impedance matching network consisting of a resistor and capacitor in parallel. The values of these components will be application specific.         |  |  |
| RX4 <u>+</u> | TPI  | 113, 114 | Port 4 Receive: 10BASE-T receiver input - requires a $50\Omega$ receive termination.                                                                                                                                               |  |  |
| TX5 <u>+</u> | TPO  | 95, 96   | <b>Port 5 Transmit:</b> 10BASE-T transmitter output - requires a series source imped-<br>ance matching network consisting of a resistor and capacitor in parallel. The values<br>of these components will be application specific. |  |  |
| RX5 <u>+</u> | TPI  | 99, 100  | <b>Port 5 Receive:</b> 10BASE-T receiver input - requires a $50\Omega$ receive termination.                                                                                                                                        |  |  |
| TX6 <u>+</u> | TPO  | 93, 94   | <b>Port 6 Transmit:</b> 10BASE-T transmitter output - requires a series source imped-<br>ance matching network consisting of a resistor and capacitor in parallel. The values<br>of these components will be application specific. |  |  |
| RX6 <u>+</u> | TPI  | 89, 90   | <b>Port 6 Receive:</b> 10BASE-T receiver input - requires a 50 $\Omega$ receive termination.                                                                                                                                       |  |  |
| TX7 <u>+</u> | TPO  | 83, 84   | <b>Port 7 Transmit:</b> 10BASE-T transmitter output - requires a series source imped-<br>ance matching network consisting of a resistor and capacitor in parallel. The values<br>of these components will be application specific. |  |  |
| RX7 <u>+</u> | TPI  | 87, 88   | <b>Port 7 Receive:</b> 10BASE-T receiver input - requires a $50\Omega$ receive termination.                                                                                                                                        |  |  |
| TX8 <u>+</u> | TPO  | 78, 79   | <b>Port 8 Transmit:</b> 10BASE-T transmitter output - requires a series source imped-<br>ance matching network consisting of a resistor and capacitor in parallel. The values<br>of these components will be application specific. |  |  |
| RX8 <u>+</u> | TPI  | 74, 75   | <b>Port 8 Receive:</b> 10BASE-T receiver input - requires a 50 $\Omega$ receive termination.                                                                                                                                       |  |  |
|              | 1    | 1        |                                                                                                                                                                                                                                    |  |  |

# 4.3 STATUS LED INTERFACE

All the DP83959's direct drive LED outputs can drive up to 14mA maximum. The LED outputs are intended to drive an external LED with a series current limiting resistor. The Partition/Link OK LED outputs can sink or source current and are thus suitable for driving single or bi-color LEDs directly. Bi-color LEDs can be connected between the A and B outputs (with series current limiting resistors) (see section 5.11).

The direct drive LED outputs are asserted during power-on/reset (either internal or external reset) and remain asserted for 1 second (nominal) following the trailing edge of the internal/external reset signal. During the LED test at power-on/reset, the Partition/Link OK 'A' outputs will all be logic '1' and the 'B' outputs logic '0'.

DP83955/6 compatible LED drive outputs are only asserted for the duration of the 1 second LED test following the trailing edge of the internal/external reset (they are not asserted during reset). The DP83955/6 compatible status LED scheme is described in the functional description (Section 5.13) as it requires external circuitry to latch the status and drive the LEDs.

| Signal Name      | Туре             | Pin #    |                                                                                                                           | Description                                         |                              |                                     |
|------------------|------------------|----------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------|-------------------------------------|
| P/L_1A<br>P/L_1B | O (14mA<br>max.) | 6<br>9   | <b>Partition/Link OK LED 1 - A and B:</b> LED outputs (for use with single or bi-color LEDs) with the following function: |                                                     |                              |                                     |
|                  |                  |          | Link Status<br>/OK<br>/OK<br>OK<br>OK                                                                                     | Partition Status<br>/PART<br>PART<br>/PART<br>PART  | A Output<br>1<br>1<br>0<br>1 | <b>B Output</b><br>1<br>1<br>1<br>0 |
| P/L_2A<br>P/L_2B | O (14mA<br>max.) | 10<br>11 |                                                                                                                           | LED 2 - A and B: LED the following function:        | outputs (for use             | e with single o                     |
|                  |                  |          | Link Status<br>/OK<br>/OK<br>OK<br>OK                                                                                     | Partition Status<br>/PART<br>PART<br>/PART<br>PART  | A Output<br>1<br>1<br>0<br>1 | <b>B Output</b><br>1<br>1<br>1<br>0 |
| P/L_3A<br>P/L_3B | O (14mA<br>max.) | 12<br>13 |                                                                                                                           | <b>LED 3 - A and B:</b> LED the following function: | outputs (for use             | e with single o                     |
|                  |                  |          | Link Status<br>/OK<br>/OK<br>OK<br>OK                                                                                     | Partition Status<br>/PART<br>PART<br>/PART<br>PART  | A Output<br>1<br>1<br>0<br>1 | B Output<br>1<br>1<br>1<br>0        |
| P/L_4A<br>P/L_4B | O (14mA<br>max.) | 14<br>17 |                                                                                                                           | <b>LED 4 - A and B:</b> LED the following function: | outputs (for use             | e with single o                     |
|                  |                  |          | Link Status<br>/OK<br>/OK<br>OK<br>OK                                                                                     | Partition Status<br>/PART<br>PART<br>/PART<br>PART  | A Output<br>1<br>1<br>0<br>1 | <b>B Output</b><br>1<br>1<br>1<br>0 |
| P/L_5A<br>P/L_5B | O (14mA<br>max.) | 18<br>19 |                                                                                                                           | <b>LED 5 - A and B:</b> LED the following function: | outputs (for use             | e with single o                     |
|                  |                  |          | Link Status                                                                                                               | Partition Status                                    | A Output                     | B Output                            |
|                  |                  |          | /OK<br>/OK                                                                                                                | /PART<br>PART                                       | 1                            | 1                                   |
|                  |                  |          | OK<br>OK                                                                                                                  | /PART                                               | 0                            | 1                                   |
|                  | 1                |          | OK                                                                                                                        | PART                                                | 0                            | I                                   |

| Signal Name      | Туре             | Pin #    |                                                                                                                    | Descriptior                                                                                                  | 1                                         |                                     |
|------------------|------------------|----------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------|
| P/L_6A<br>P/L_6B | O (14mA<br>max.) | 20<br>21 | Partition/Link OK LED 6 - A and B: LED outputs (for use with single or bi-color LEDs) with the following function: |                                                                                                              |                                           |                                     |
|                  |                  |          | Link Status<br>/OK<br>/OK<br>OK<br>OK                                                                              | Partition Status<br>/PART<br>PART<br>/PART<br>PART                                                           | A Output<br>1<br>1<br>0<br>1              | <b>B Output</b><br>1<br>1<br>1<br>0 |
| P/L_7A<br>P/L_7B | O (14mA<br>max.) | 22<br>25 |                                                                                                                    | LED 7 - A and B: LED the following function:                                                                 | outputs (for use                          | e with single o                     |
|                  |                  |          | Link Status<br>/OK<br>/OK<br>OK<br>OK                                                                              | Partition Status<br>/PART<br>PART<br>/PART<br>PART                                                           | A Output<br>1<br>0<br>1                   | <b>B Output</b><br>1<br>1<br>1<br>0 |
| P/L_8A<br>P/L_8B | O (14mA<br>max.) | 26<br>27 |                                                                                                                    | LED 8 - A and B: LED<br>the following function:                                                              | outputs (for use                          | e with single of                    |
|                  |                  |          | Link Status<br>/OK<br>/OK<br>OK<br>OK                                                                              | Partition Status<br>/PART<br>PART<br>/PART<br>PART                                                           | A Output<br>1<br>1<br>0<br>1              | <b>B Output</b><br>1<br>1<br>1<br>0 |
| /TRAF1           | O (14mA<br>max.) | 150      | Traffic Monitor LE<br>0 = 1% Traffic Level<br>1 = Traffic Level less                                               | reached or exceeded                                                                                          |                                           |                                     |
| /TRAF2           | O (14mA<br>max.) | 151      | Traffic Monitor LE<br>0 = 2% Traffic Level<br>1 = Traffic Level les                                                | reached or exceeded                                                                                          |                                           |                                     |
| /TRAF3           | O (14mA<br>max.) | 152      | <b>Traffic Monitor LE</b><br>0 = 3% Traffic Level<br>1 = Traffic Level less                                        | reached or exceeded                                                                                          |                                           |                                     |
| /TRAF4           | O (14mA<br>max.) | 154      | <b>Traffic Monitor LE</b><br>0 = 6% Traffic Level<br>1 = Traffic Level less                                        | reached or exceeded                                                                                          |                                           |                                     |
| /TRAF5           | O (14mA<br>max.) | 155      | <b>Traffic Monitor LE</b><br>0 = 12% Traffic Leve<br>1 = Traffic Level less                                        | el reached or exceeded                                                                                       |                                           |                                     |
| /TRAF6           | O (14mA<br>max.) | 156      | Traffic Monitor LE<br>0 = 25% Traffic Leve<br>1 = Traffic Level less                                               | el reached or exceeded                                                                                       |                                           |                                     |
| /TRAF7           | O (14mA<br>max.) | 158      | <b>Traffic Monitor LE</b><br>0 = 50% Traffic Level<br>1 = Traffic Level less                                       | el reached or exceeded                                                                                       |                                           |                                     |
| /TRAF8           | O (14mA<br>max.) | 159      | <b>Traffic Monitor LE</b><br>0 = >80% Traffic Le<br>1 = Traffic Level les                                          | vel reached or exceeded                                                                                      |                                           |                                     |
| /ALERT           | O (14mA<br>max.) | 149      | one second or more<br>The output remains                                                                           | ED output indicates that<br>has occurred, or a 10BA<br>active until the current<br>horter than 30ms, for a m | SE-T port partition of event condition of | on has occurre<br>ceases or, if th  |

| Signal Name | Туре             | Pin # | Description                                                                                                                                                                                                                                            |
|-------------|------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /PART0      | O (14mA<br>max.) | 39    | Partition LED 0: Partition LED output for the AUI port. Active low.                                                                                                                                                                                    |
| /GCOL       | O (14mA<br>max.) | 4     | <b>Global Collision LED:</b> Global collision status LED output. Indicates collision activity on any port. Active low. This output will be asserted low until the star of the next network event or for a maximum of 30ms (nominal value).             |
| /GACT       | O (14mA<br>max.) | 5     | <b>Global Activity LED:</b> Global Activity LED output. Indicates receive activity (carrier sense active) on any port. Active low. This output will be asserted low until the start of the next network event or for a maximum of 30ms (nomina value). |

### 4.4 INTER-LERIC BUS INTERFACE

| Signal Name | Туре | Pin # | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /ACKI       | I    | 32    | <b>Acknowledge Input:</b> to the network ports' arbitration chain. If the Inter-LERIC bus is not being used or if this LERIC8 is at the top of the /ACKI - /ACKO chain or is the only repeater chip in the system, this pin should be connected to V <sub>CC</sub> either directly or via a pull-up resistor ( $\approx 4.7 \text{ k}\Omega$ ). Otherwise, this input should be driven from the previous LERIC8's /ACKO output.                                                                                                                                                                                                                                                                       |
| /ACKO       | 0    | 33    | Acknowledge Output: from the network ports' arbitration chain, connected to the /ACKI of the next repeater chip in the /ACKI - /ACKO chain. If this LERIC8 is not chained to any other repeater chips, this pin should be left unconnected.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| IRD         | I/O  | 45    | <b>Inter-LERIC Data:</b> When asserted as an output this signal provides a serial data stream in NRZ format. The signal is asserted by a LERIC8 when it is receiving data from one of its network segments. The default condition of this signal is to be an input. In this state it may be driven by other devices on the Inter-LERIC bus. If the Inter-LERIC bus is not being used, this pin should be left unconnected (it has an internal pull-up resistor of 14 k $\Omega$ ) or pulled up to V <sub>CC</sub> via an external resistor.                                                                                                                                                           |
| /IRE        | 1/0  | 44    | <b>Inter-LERIC Enable:</b> When asserted as an output this signal provides an activity framing enable for the serial data stream. The signal is asserted by a LERIC8 when it is receiving data from one of its network segments. The default condition of this signal is to be an input. In this state it may be driven by other devices on the Inter-LERIC bus. If the Inter-LERIC bus is not being used, this pin should be left unconnected (it has an internal pull-up resistor of 14 k $\Omega$ ) or pulled up to V <sub>CC</sub> via an external resistor. If the Inter-LERIC bus is to be used, this signal should have an external 680 $\Omega$ pull-up resistor to ensure fast de-assertion. |
| IRC         | I/O  | 43    | <b>Inter-LERIC Clock:</b> When asserted as an output this signal provides a clock signal for the serial data stream. Data (IRD) is changed on the falling edge of the clock. The signal is asserted by a LERIC8 when it is receiving data from one of its network segments. The default condition of this signal is to be an input. When an input, IRD is sampled on the rising edge of the clock. In this state it may be driven by other devices on the Inter-LERIC bus. If the Inter-LERIC bus is not being used, this pin should be left unconnected (it has an internal pull-up resistor of 14 k $\Omega$ ) or pulled up to V <sub>CC</sub> via an external resistor.                            |
| /COLN       | I/O  | 50    | <b>Collision on Port N:</b> This denotes that a collision is occurring on the port receiving the data packet (Port N). The default condition of this signal is to be an input. In this state it may be driven by other devices on the Inter-LERIC bus. If the Inter-LERIC bus is not being used, this pin should be left unconnected (it has an internal pull-up resistor of 3.5 kΩ) or pulled up to $V_{CC}$ via an external resistor. If the Inter-LERIC bus is to be used, this signal should have an external 680Ω pull-up resistor to ensure fast de-assertion.                                                                                                                                  |

| Signal Name | Туре       | Pin # | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /ACTN       | I/O (O.D.) | 48    | Activity on Port N: The LERIC8 asserts this signal when data or collision information is received from one of its network segments. The LERIC8 senses this signal when this or another LERIC8 in a multi-LERIC system is receiving data or collision information. If the Inter-LERIC bus is not being used, this pin should be left unconnected (it has an internal pull-up resistor of 3.5 k $\Omega$ ) or pulled up to V <sub>CC</sub> via an external resistor. If the Inter-LERIC bus is to be used, this signal should have an external 680 $\Omega$ pull-up resistor to ensure fast de-assertion.                                                                                                       |
| /ANYXN      | I/O (O.D.) | 49    | Activity on Any Port Except Port N: The LERIC8 asserts this signal when a transmit collision is experienced or multiple ports have active collisions or their network segments. The LERIC8 senses this signal when this or another LERIC8 in a multi-LERIC system is experiencing transmit collisions or multiple ports have active collisions on their network segments. If the Inter-LERIC bus is not being used, this pin should be left unconnected (it has an interna pull-up resistor of 14 k $\Omega$ ) or pulled up to V <sub>CC</sub> via an external resistor. If the Inter-LERIC bus is to be used, this signal should have an external 680 $\Omega$ pull-up resistor to ensure fast de-assertion. |

### 4.5 CLOCK INTERFACE

| Signal Name | Туре | Pin # | Description                                                                                                                                                                                                                                                                                      |
|-------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X_IN        | I    | 144   | <b>20 MHz Crystal Oscillator Input:</b> This pin can be used to connect an external 20MHz crystal (between X_IN and X_OUT) as shown in Figure 2, or as an external TTL compatible 20MHz oscillator module input as shown in Figure 3.                                                            |
| X_OUT       | 0    | 145   | <b>20 MHz Crystal Oscillator Output:</b> This pin is used to connect to an external 20 MHz crystal (between X_IN and X_OUT) as shown in Figure 2. When using an external 20 MHz crystal oscillator module connected to the X_IN input, this pin should be left unconnected as shown in Figure 3. |
|             |      |       |                                                                                                                                                                                                                                                                                                  |

# 4.6 REGISTER/CONFIGURATION INTERFACE

| Signal Name                     | Туре | Pin #                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------|------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RA4<br>RA3<br>RA2<br>RA1<br>RA0 | I/O  | 63<br>62<br>61<br>60<br>59 | <b>Register Address [4:0]:</b> Address input value for the current register access. These pins also provide DP83955/6 compatible LED status: during display update cycles these pins become outputs that provide port address and data for LED display purposes. Pins RA[1:4] cycle values from 0h to 9h while RA0 provides Bad Polarity status for the 10BASE-T ports. See Section 5.13 for more details. If the DP83955/6 compatible LEDs and register interface are not being used, these pins should be left unconnected. In Option mode (see DEF/OPT), the logic levels present on RA[4:0] at reset (set by pull-up or pull-down resistors) are latched into the configuration registers. See section 5.12 for more information. |
| D3<br>D2<br>D1<br>D0            | I/O  | 56<br>55<br>54<br>53       | <b>Data [3:0]:</b> Bi-directional register data. /RD and /WR control the data direction. With /RD low and /WR high, D[3:0] are outputs and with /RD high and /WR low, D[3:0] are inputs. These pins also provide the DP83955/6 compatible status outputs for latching to LEDs. See Section 5.13 for more details. If the DP83955/6 compatible LEDs and register interface are not being used, these pins should be left unconnected.<br>In Option mode (see DEF/OPT), the logic levels present on D[3:0] at reset (set by pull-up or pull-down resistors) are latched into the configuration registers. See Section 5.12 for more information.                                                                                        |
| /RD                             | I    | 31                         | <b>Read Strobe:</b> When strobed low, this input schedules a register read access to the register addressed by the RA[4:0] pins. If the register interface is not being used, this pin should be connected to $V_{CC}$ either directly or via a pull-up resistor ( $\approx$ 4.7 k $\Omega$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| /WR                             | I    | 30                         | <b>Write Strobe:</b> When strobed low, this input schedules a register write access to the register addressed by the RA[4:0] pins. If the register interface is not being used, this pin should be connected to $V_{CC}$ either directly or via a pull-up resistor (~4.7 k $\Omega$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /READY                          | 0    | 51                         | <b>Ready Handshake:</b> The falling edge of this active low signal during a read cycle indicates that data is stable and valid for sampling. In write cycles, the falling edge of /READY denotes that the write data has been latched by the LeRIC8. Therefore, data must have been available and stable for this operation to be successful.                                                                                                                                                                                                                                                                                                                                                                                         |
| /STR                            | 0    | 36                         | <b>Display Update Strobe:</b> When using the DP83955/6 compatible status LEDs this active low signal controls the latching of display data for network ports into the external display latches. If not required, this pin should be lef unconnected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DFS                             | 0    | 37                         | <b>Display Frozen Strobe:</b> Asserted high when the display data for each packer<br>is frozen at the end of the repeater transmission of the packet until the start of<br>the next network event or for a maximum of 30ms (nominal value). This<br>ensures DP83955/6 compatible status LEDs are visible even for single<br>network events.                                                                                                                                                                                                                                                                                                                                                                                           |
| BUFEN                           | 0    | 52                         | <b>Buffer Enable:</b> Used to control an external buffer (if required) for the data bus, D[3:0]. Extermal buffer will be necessary in systems having a registe interface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| /MLOAD                          | Ι    | 142                        | <b>Mode Load/Reset:</b> TTL level reset input (not Schmitt) for external reset or test purposes. If not required, this pin should be connected to V <sub>CC</sub> eithe directly or via a pull-up resistor ( $\approx$ 4.7 kΩ). On the rising (trailing) edge o /MLOAD, the logic levels present on the D[3:0] and RA[4:0] inputs (set by pull-up or pull-down resistors) are latched into the configuration registers.                                                                                                                                                                                                                                                                                                               |

| Signal Name | Туре | Pin # | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RST_INT/EXT | I    | 143   | <b>RESET Internal or External:</b> This pin is used to select either internal (automatic) or external reset mode. External reset pulses should be applied to the /MLOAD pin. If not used, this pin should be connected to $V_{CC}$ either directly or via a pull-up resistor ( $\approx$ 4.7 k $\Omega$ ).<br>0 = External reset selected<br>1 = Internal reset selected<br>The rising edge of the external (/MLOAD) or internal reset signal starts the 1 second display test operation. |

### 4.7 MISCELLANEOUS PINS

| Signal Name | Туре | Pin #                                                           | Description                                                                                                                                                                                                                                                                                             |
|-------------|------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEF/OPT     | I    | 29                                                              | <b>Default/Optional Configuration Mode:</b> This input is used to select the LERIC8 configuration mode:                                                                                                                                                                                                 |
|             |      |                                                                 | $1 = Default Mode - The default LERIC8 configuration is used. To select this mode the DEF/OPT pin should be pulled up to VCC with a 4.7 k\Omega resistor. See Section 5.12 for a description of the default parameters.$                                                                                |
|             |      |                                                                 | <ul> <li>Optional Mode - The LERIC8's configuration is loaded into the device at<br/>the trailing edge of reset from values set on the D[3:0] and RA[4:0] pins.<br/>These values are set using 10 kΩ pull-up or pull-down resistors. For<br/>normal default mode, no resistors are required.</li> </ul> |
| TEST_1      | I    | 28                                                              | Test 1: This pin should be connected to V <sub>CC</sub> for normal operation.                                                                                                                                                                                                                           |
| TEST_2      | I    | 103                                                             | Test 2: This pin should be connected to GND for normal operation.                                                                                                                                                                                                                                       |
| TEST_3      | 0    | 104                                                             | Test 3: This pin should be left unconnected for normal operation.                                                                                                                                                                                                                                       |
| TEST_4      | I    | 111                                                             | Test 4: This pin should be connected to GND for normal operation.                                                                                                                                                                                                                                       |
| TEST_5      | I    | 102                                                             | Test 5: This pin should be connected to GND for normal operation.                                                                                                                                                                                                                                       |
| TEST_EN     | I    | 112                                                             | Test Enable: This pin selects between normal and factory test operation modes:                                                                                                                                                                                                                          |
|             |      |                                                                 | 0 = Normal operation - tie the TEST_EN pin to GND for normal operation.                                                                                                                                                                                                                                 |
|             |      |                                                                 | 1 = LERIC8 factory test mode - do not use.                                                                                                                                                                                                                                                              |
| RXM         | 0    | 38                                                              | <b>Receive Manchester Data:</b> This pin should be left unconnected for normal operation. It is the receive Manchester data output and is supplied for evaluation and testing purposes.                                                                                                                 |
| FIL_TTL     |      | 101                                                             | <b>Filter /TTL Transmit Data:</b> This pin selects between pre-filter TTL transmit data and normal filtered analog transmit data. Connect this pin to GND for normal operation.                                                                                                                         |
|             |      |                                                                 | 0 = Normal Analog Transmit Data - Transmit outputs are normal 10BASE-T.                                                                                                                                                                                                                                 |
|             |      |                                                                 | 1 = Pre-Filter TTL Transmit Data - Transmit outputs become TTL level.                                                                                                                                                                                                                                   |
| NC          | -    | 1, 2, 40,<br>41, 42,<br>80, 81,<br>82, 119,<br>120,<br>121, 160 | <b>No Connect:</b> These pins are not connected internally to the DP83959. They should be connected directly to the PCB ground plane. This will help decrease the thermal resistance between the device and its environment.                                                                            |

### 4.8 POWER AND GROUND PINS

The LERIC8 has power and ground (V<sub>CC</sub> and GND) pins for each of the major functional blocks of the device. This section describes the pairing and decoupling requirements of the power and ground pins.

### 4.8.1 Bi-Color LED Power and Ground Pins

These are labeled  $V_{CC}\_LED$  and GND\_LED and are adjacent to each other in the following pairs:

 $\begin{array}{ll} V_{CC}/GND\_LED & 7/8 \\ V_{CC}/GND\_LED & 15/16 \\ V_{CC}/GND\_LED & 23/24 \end{array}$ 

Each pair of V<sub>CC</sub>\_LED/GND\_LED pins supplies source and sink current for either 3 or 4 bi-color LED drivers. These power and ground pins should be decoupled with 0.1 $\mu$ F capacitors to reduce noise.

### **Special Considerations Regarding Icc**

Since the drivers source the current required to turn on the LEDs, the total lcc required by the device will fluctuate depending on network traffic conditions. This should be taken into consideration when calculating the power requirements of the system.

### 4.8.2 Single LED Ground Pins

These are labeled GND\_LED and are interspersed amongst the single LED output driver pins which only have to sink current to ground. These pins are:

GND\_LED 148, 153 and 157

### 4.8.3 PLL Power and Ground Pins

The LERIC8's receive PLL supply pins (V<sub>CC</sub>\_PLL pin 64 and GND\_PLL pin 65) should be filtered from noise on the normal +5V V<sub>CC</sub> supply. The recommended method is with a 10  $\mu$ F capacitor in parallel with a 0.01 $\mu$ F capacitor and fed from V<sub>CC</sub> via a 22 $\Omega$  resistor as shown in Figure 1.

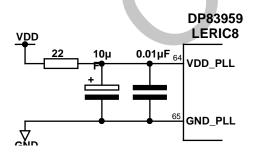



Figure 1. DP83959 PLL Power Supply Decoupling

### 4.8.4 AUI and 10BASE-T Port Power and Ground Pins

The AUI port and eight 10BASE-T ports each have their own power and ground pair. These should be decoupled with a  $0.1\mu$ F capacitor per pair as close to the power/ground pins as possible.

The AUI and 10BASE-T port power and ground designations are:

| Port            | Power/Ground Names              | Pin Numbers |
|-----------------|---------------------------------|-------------|
| AUI             | V <sub>CC</sub> _AUI<br>GND_AUI | 67<br>66    |
| 10BASE-T Port 1 | V <sub>CC</sub> _P1<br>GND_P1   | 137<br>136  |
| 10BASE-T Port 2 | V <sub>CC</sub> _P2<br>GND_P2   | 130<br>131  |
| 10BASE-T Port 3 | V <sub>CC</sub> _P3<br>GND_P3   | 125<br>124  |
| 10BASE-T Port 4 | V <sub>CC</sub> _P4<br>GND_P4   | 115<br>116  |
| 10BASE-T Port 5 | V <sub>CC</sub> _P5<br>GND_P5   | 98<br>97    |
| 10BASE-T Port 6 | V <sub>CC</sub> _P6<br>GND_P6   | 91<br>92    |
| 10BASE-T Port 7 | V <sub>CC</sub> _P7<br>GND_P7   | 86<br>85    |
| 10BASE-T Port 8 | V <sub>CC</sub> _P8<br>GND_P8   | 76<br>77    |

### 4.8.5 Analog Power and Ground Pins

The transmit wave shaping analog circuitry of the LERIC8 has its own power and ground pair:

| V <sub>CC</sub> _ANLG | pin 109 |
|-----------------------|---------|
| GND_ANLG              | pin 110 |

4

This pair should be decoupled with a  $10\mu$ F capacitor as close as possible to the pins. The power and ground feed to these pins should be kept as quiet as possible.

### 4.8.6 Crystal Oscillator Power and Ground Pins

The crystal oscillator has its own power and ground pins (V<sub>CC</sub>\_OSC pin 141 and GND\_OSC pin 140). This pair should be kept relatively noise free and decoupled with a  $0.1\mu$ F capacitor as close to the pins as possible.

### 4.8.7 Digital Power and Ground Pins

The DP83959's digital core logic power supply pins should be decoupled in pairs with  $0.1\mu F$  capacitors as close to the pins as possible. The digital power and ground pin pairs are as follows:

| V <sub>CC</sub> | GND |
|-----------------|-----|
| -               | 3   |
| 34              | 35  |
| 46              | 47  |
| 58              | 57  |
| 106             | 105 |
| 146             | 147 |

# 5.0 Functional Description

The DP83959 LERIC8 consists of the following functional blocks, each of which is described in the sections that follow:

Repeater Main State Machine & Timers Port State Machines Receive Multiplexer Manchester Decoder Elasticity Buffer Transmit De-Multiplexer & Manchester Encoder Inter-LERIC Bus Interface Clock Interface Reset Interface Reset Interface Traffic Monitor LED Interface Port Status LEDs Configuration/Register Interface Min/Max Mode LED Interface AUI Port 0 10BASE-T Ports 1 - 8

# 5.1 REPEATER MAIN STATE MACHINE & TIMERS

The main state machine (MSM) has an associated set of timers that ensure the various IEEE 802.3 section 9 repeater specification times (referred to as TW1 to TW6) are fulfilled. Some of the major functions of the MSM and Timers are shown in Table 1.

The MSM is the heart of the DP83959. It controls the operation of most of the functional blocks and performs the majority of the data and collision propagation operations as defined by the IEEE specification.

The MSM requires status inputs from each of the DP83959's ports. Each port has its own port state machine that controls the port and maintains its status. The interaction of the main and port state machines is visible, in part, by observation of the Inter-LERIC bus.

### 5.2 PORT STATE MACHINES

Each of the nine LERIC8 ports has its own port state machine (PSM). PSMs have two main functions:

1. Control the transmission of repeated data and jam signals over the attached segment.  Decide if the port should be the current source of data or collision information to be repeated over the network. This repeater port is known as port N.

An arbitration process is required to enable the repeater to transition from the idle state to the send preamble pattern or receive collision states. This process is used to locate the port which will be port N for that particular packet.

The data received from this port is directed to the PLL decoder and transmitted over the Inter-LERIC bus. If the repeater enters the transmit collision state a further arbitration operation is performed to determine which port is port M. Port M is differentiated from the repeater's other ports if the repeater enters the one port left state. In this state port M does not transmit to its segment; where as all other ports are still required to transmit to their segments.

### 5.3 RECEIVE MULTIPLEXER

The receive multiplexer routes data from whichever port receives network traffic first (port N) to the Manchester decoder. The receive multiplexer also notifies the main state machine of any collision activity that may be present on the repeater's ports.

# 5.4 MANCHESTER DECODER

Manchester encoded receive data from the receive multiplexer is routed to the Manchester decoder. The Manchester decoder contains a sophisticated PLL that locks onto the receive packet's preamble signal. This ensures the accumulated jitter is removed from the incoming data. The Manchester data is then decoded into a NRZ receive data stream with a synchronous clock. The DP83959 has a pin (the RXM pin) to enable external Manchester decoders to be used if required.

### 5.5 ELASTICITY BUFFER

An elasticity buffer is required to allow for any difference in the frequencies between the local clock and the clock of the device that originated the packet, and for any preamble bits lost in the physical layer(s) in a packet's path prior to being repeated.

| Function                             | Action                                                                                                                                                                           |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preamble Regeneration                | Restore the length of the preamble pattern to the defined size.                                                                                                                  |
| Fragment Extension                   | Extend received data or collision fragments to meet the minimum fragment length of 96 bits.                                                                                      |
| Elasticity Buffer Control            | A portion of the received packet may require storage in an Elasticity Buffer to accommodate preamble regeneration.                                                               |
| Jam / Preamble<br>Pattern Generation | In cases of receive or transmit collisions, a LERIC8 is required to transmit a jam pattern (1010). <b>Note:</b> This pattern is the same as that used for preamble regeneration. |
| Transmit Collision<br>Enforcement    | Once the <i>TRANSMIT COLLISION</i> state is entered a repeater is required to stay in this state for at least 96 network bit times.                                              |
| Data Encoding Control                | NRZ format data from the elasticity buffer must be encoded into Manchester format data prior to re-transmission.                                                                 |
| Tw1 Enforcement                      | Enforce the Transmit Recovery Time specification.                                                                                                                                |
| Tw2 Enforcement                      | Enforce Carrier Recovery Time specification on all ports with active collisions.                                                                                                 |

### Table 1 Repeater Main State Machine & Timer Functions

The DP83959 has a 32 bit elasticity buffer (FIFO) in the transmit path prior to the transmit de-multiplexer. This enables the DP83959 to synchronize data packets to its own local clock prior to transmission and regenerate preamble as required.

Soon after the network segment receiving the data packet has been identified, the DP83959 begins to transmit the preamble pattern (1010...) to the other network segments. While the preamble is being transmitted, the elasticity buffer monitors the decoded receive clock and data signals (this is done via the inter-LERIC bus as described later). When the start of frame delimiter (SFD) is detected, the receive data stream is written to the elasticity buffer. Removal of data from the elasticity buffer for re-transmission is not allowed until a valid length preamble pattern has been transmitted.

# 5.6 TRANSMIT DE-MULTIPLEXER & MANCHESTER ENCODER

The transmit de-multiplexer routes data from the Manchester decoder to all ports other than the one receiving data (all ports not N). The NRZ data is then encoded into a Manchester transmit data stream with a synchronous clock.

### 5.7 INTER-LERIC BUS INTERFACE

LERIC8 devices may be cascaded to form single logical 10BASE-T repeaters with more ports if required. This is done using the Inter-LERIC Bus. This bus consists of eight signals (see Section 4.4).

Because the LERIC8 was designed for cost conscious stand-alone 8 port repeater applications, the drive strength of some of the Inter-LERIC bus signals is too weak to allow proper operation with LERIC8's on separate boards. External Inter-LERIC bus transceivers cannot be used with the LERIC8 since no signal to enable the transceivers is provided. The maximum number of cascaded LERIC8's on one PCB is 3, using short, low capacitance traces. Note that external 680 $\Omega$  pull-up resistors are required on the /COLN and /ACTN signals, if the Inter-LERIC bus is used, because of the reduced drive capability of these signals. These are required to ensure fast de-assertion of these signals.

Although the LERIC8 has internal pull-up resistors on the IRD, /IRE, IRC, and /ANYXN signals, it is still recommended that external pull-ups be used. Refer to section 7.0 System Considerations for more information.

### 5.8 CLOCK INTERFACE

The DP83959 LERIC8 requires a single 20 MHz  $\pm$ 100 ppm reference clock source. This can either be provided by a crystal (with two small padding capacitors, typically 27 pF) connected to the X\_IN and X\_OUT pins. This arrangement is shown in Figure 2.

The value of the load padding capacitors depends upon the crystal specification. They can be calculated knowing the stray input and output capacitance's and the crystal manufacturer's recommended shunt load capacitance. Typical input capacitance (Cin) is 5 pF and typical output capacitance (Cout) is 6 pF.

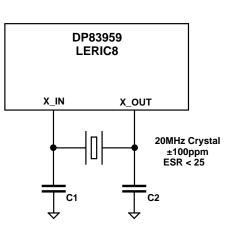



Figure 2. Clock Using a Crystal

The total shunt load capacitance is given by the equation:

 $C_L = \frac{\text{Cin} \times \text{Cout}}{\text{Cin} + \text{Cout}} + \frac{C_1 \times C_2}{C_1 + C_2}$ 

The load padding capacitors C1 and C2 should be made equal in value. Typically, these capacitors are in the order of 27pF.

Alternatively, an external 20 MHz oscillator module (mounted close to the device) feeding TTL clock directly into the  $X_IN$  input (with  $X_OUT$  left unconnected) can be used. This arrangement is shown in Figure 3.

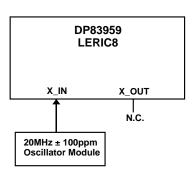



Figure 3. Clock Using an Oscillator Module

### 5.9 RESET INTERFACE

The DP83959 LERIC8 has an internal power-on reset function that requires no external components for it to power up correctly and begin repeater operation automatically.

A TTL compatible reset input is also provided (/MLOAD). Note that the /MLOAD input is not a Schmitt input: an externally generated pulse must be supplied to this input if it is to be used. If not required, the /MLOAD input can be left unconnected. A representational logic diagram of the reset function is given in Figure 4. The RES\_INT/EXT pin selects either internal or external reset.

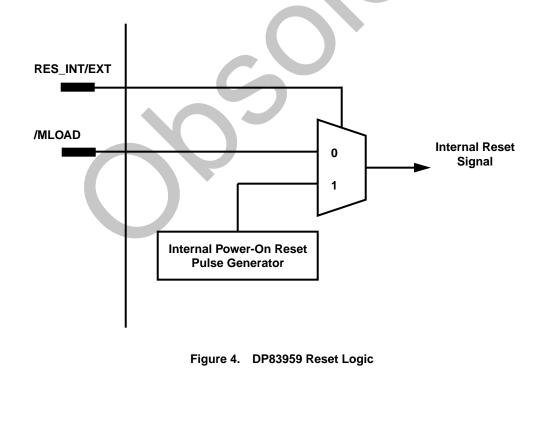
Optionally, configuration information can be loaded into the device at reset from values set by pull-up and/or pull-down resistors on the D[3:0] and RA[4:0] pins. See Section 5.12 for more details.

The rising edge of the selected reset signal is used to start the 1 second LED test operation.

As a power-on test feature, the DP83959 will assert all single ended LED outputs, the DP83955/6 compatible LED outputs and the 'B' outputs of the bi-color LED outputs. The direct drive LED outputs are asserted during reset as well as for 1 second following the trailing edge of reset, whereas the DP83955/6 compatible LEDs will only be asserted for the 1 second test, not during reset. See the pin descriptions for the LEDs in Section 4.3 for more details.

### 5.10 TRAFFIC MONITOR LED INTERFACE

The Network Traffic Level Monitor function displays the network utilization as a percentage on 8 LEDs connected in bargraph format. LEDs connected to the /TRAF[1:8] outputs will indicate the following network traffic levels 1%, 2%, 3%, 6%, 12%, 25%, 50%, and >80% respectfully. These are chosen in order to provide for an ergonomic display.


The Network Traffic Level Monitor function uses a sum of the internal carrier sense signals from each of the ports to assess the amount of repeater activity in any given sample pe-

riod. Network activity is sampled at 6.25Hz. The activity level is decoded into a percentage of the theoretical maximum and output to the /TRAF[1:8] pins for display on the bargraph style LEDs. That is, all LED outputs up to and including the currently determined network traffic LED level will be asserted. Figure 5 shows how to connect the traffic LEDs.

Additionally, three global LEDs are provided:

An Alert LED output indicates when traffic level exceeds 80% for 1 second or more or when any of the eight 10BASE-T ports is partitioned for 1 second or more. The output will remain active until the excess traffic or long partition event ends or for a minimum of 30ms (nominal value) to ensure LED visibility.

A global activity LED output (/GACT) indicates the presence of any receive activity, while a global collision LED output (/GCOL) indicates the presence of collisions on any port. These LED outputs have the capability to lengthen the time the LED is active. At the end of each event, the output is held asserted for 30 ms, or until another such event occurs. Thus, at low levels of network activity (for /GACT) or network collisions (for /GCOL), the LED is lit long enough to make it discernible to the human eye. At higher rates of events, the relative brightness of the LEDs indicate high or low activity.



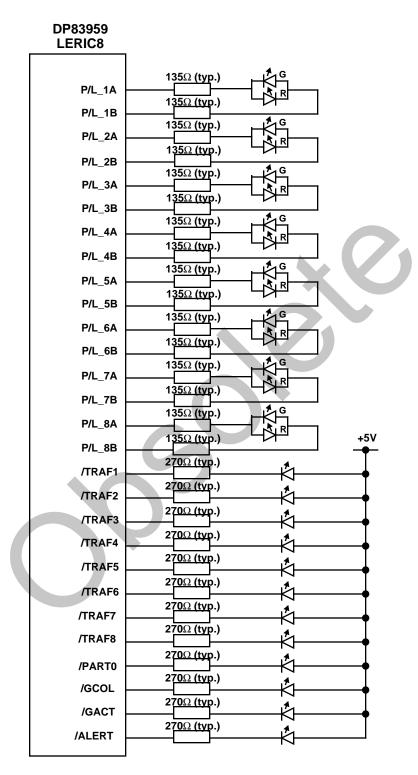



Figure 5. DP83959 Direct Drive LED Connections

### 5.11 PORT STATUS LEDS

The eight 10BASE-T Port Partition Status/Link OK Status bi-color LED outputs have the functionality given in Table 2.

The representational logic of this function is given in Figure 6. This logic is repeated for each of the 10BASE-T ports ('n' in Figure 6 refers to any of ports 1 through 8). The DP83959 bi-color LED outputs use two pins each, so that either end of a two-lead bi-color LED may be driven high or low in order to achieve the required functionality. Two-lead bi-color LEDs require only the addition of a single series current limiting resistors. Three lead bi-color LEDs must be driven with two series resistors (one in each cathode lead) and the common anode lead taken to  $V_{\rm CC}$ .

If required, single LEDs may be driven by the bi-color outputs (each taken to  $V_{CC}$  via an appropriate resistor). Figure 5 shows one configuration, using bi-color LEDs.

### 5.12 CONFIGURATION/REGISTER INTERFACE

Several operational parameters can be configured into the LERIC8 at power-on/reset time (optional mode) or the standard LERIC8 configuration can be used (default mode). Selection of the mode is made using the DEF/OPT pin.

For default mode, the DEF/OPT pin must be pulled high (to  $V_{CC})$  with a 4.7  $k\Omega$  resistor. In this mode, the LERIC8 uses the default values given in Table 3.

For optional mode, the DEF/OPT pin must be pulled low. In this mode, the rising edge of either the internal reset signal or /MLOAD (see Section 5.9) is used to latch the logic levels

held on the D[3:0] and RA[4:0] inputs into the internal configuration registers. Configuration data is set on the D[3:0] and RA[4:0] pins using 10 k $\Omega$  pull-up or pull-down resistors as required. Table 3 shows the parameter sections possible.

A 10 k $\Omega$  pull-up resistor to VCC is required to set a configuration bit to 1. A 10 k $\Omega$  pull-down resistor to GND to set a configuration bit to 0.

The LERIC8 has internal registers that are accessible from the RA[4:0] and D[3:0] interface. A certain amount of control of operation and status information is available through this interface. The LERIC8's registers are compatible with those in the DP83955/6. A full description of the registers is given in Section 6.0.

Although simple 8-port standalone hubs will not require the register interface, it was nevertheless included as a necessary factory test feature. In a simple repeater design the /RD and /WR pins should be disabled by connecting them to VCC directly or via a suitable pull-up resistor (4.7 k $\Omega$ ).

Since the RA[4:0] and D[3:0] interface is used for multiple functions (configuration, register access and Min/Max LED mode outputs) register read/write data must be transferred using an external buffer.

The READY pin provides a means of handshaking register accesses into the LERIC8. A simple programmable logic device (GAL) may be used to decode the address range, assert the appropriate /RD or /WR strobe and check the READY signal. This provides an appropriate interface for whatever CPU or other device is connected.

| Link Status | Port Partition Status | LED                              |  |  |  |
|-------------|-----------------------|----------------------------------|--|--|--|
| Not OK      | Not Partitioned       | OFF                              |  |  |  |
| Not OK      | Partitioned           | OFF                              |  |  |  |
| ОК          | Not Partitioned       | Color #1 (usually GREEN)         |  |  |  |
| OK          | Partitioned           | Color #2 (usually YELLOW or RED) |  |  |  |
|             |                       |                                  |  |  |  |

### Table 2 10BASE-T Port Status LED Output Functionality Using Bi-color LEDs

P/L nB

| Pin | Function | Effect When<br>Bit = 0 | Effect When<br>Bit = 1 | Default<br>Value | Description                                                                                                                                                                                                                                                          |
|-----|----------|------------------------|------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D0  | -        | -                      | -                      | х                | Not Used: Don't Care, can leave unconnected.                                                                                                                                                                                                                         |
| D1  | -        | -                      | -                      | х                | Not Used: Don't Care, can leave unconnected.                                                                                                                                                                                                                         |
| D2  | Reserved | Not<br>Permitted       | Required               | 1                | Reserved: Must be set to 1                                                                                                                                                                                                                                           |
| D3  | EPOLSW   | Not Selected           | Selected               | 1                | Enables polarity switching of the receive squelch on detecting polarity reversal of the incoming data.                                                                                                                                                               |
| RA0 | Reserved | Not<br>Permitted       | Required               | 1                | Reserved: Must be set to 1                                                                                                                                                                                                                                           |
| RA1 | /TXONLY  | Selected               | Not Selected           | 1                | Allows the port partition state machines to restrict segment reconnection only to when a good packet is transmitted on the partitioned port.                                                                                                                         |
| RA2 | /CCLIM   | 63                     | 31                     | 0                | The IEEE802.3 10Mb/s Section 9 repeater partition specification requires a port to be partitioned after a certain number of consecutive collisions. The LERIC8 has two values available to allow users to customize the partitioning algorithm to their environment. |
| RA3 | MIN/MAX  | Minimum<br>Mode        | Maximum<br>Mode        | 1                | The operation of the DP83955/6 LERIC compatible LED display update mode is controlled by this bit.                                                                                                                                                                   |
| RA4 | -        | -                      | -                      | х                | Not Used: Don't Care, can leave unconnected.                                                                                                                                                                                                                         |

 Table 3
 Default/Optional Mode Configuration Parameter Selection

### 5.13 MIN/MAX MODE LED INTERFACE

The LERIC8 supports the Min and Max LED modes of the DP83955/6 LERIC devices. If these modes are not required (for instance, if only the direct drive LED outputs are being used), then no actions/connections are required. If Min or Max mode is required, the relevant circuitry is simply added to the data and address bus pins. The /STR pin is used to latch data into external latches for display on the status LEDs.

For Min mode, the LERIC8 operates identically to the DP83955/6 devices. Table 4 shows the interface pin functions for Min mode.

For Max mode, since the LERIC8 has more ports than the DP83955/6, a slightly different latching scheme is required. Figure 7 shows how Max mode functions for the LERIC8. Data for latching (into external 74x259 addressable latches) is presented on the D[0:3] and RA0 pins. Address information is presented on the RA[1:4] pins. The address cycles from 0h through 9h and then returns to 0h and repeats continuously.

### 5.14 AUI PORT 0

The DP83959 LERIC8 has a single AUI port that uses the standard 3 differential pairs of signal connections. The AUI receiver input pairs (RX0+/- and CD0+/-) require external line termination (78 $\Omega$  balanced termination). The AUI transmit output pairs utilize class A/B output drivers and do not require any source termination resistors (as did the DP83955/6).

The three AUI signal pairs (RX, TX, CD) require the use of an isolation transformer (standard AUI 1:1 type) in order to meet the fault condition requirements of IEEE 802.3. A typical AUI port connection is shown in Figure 8.

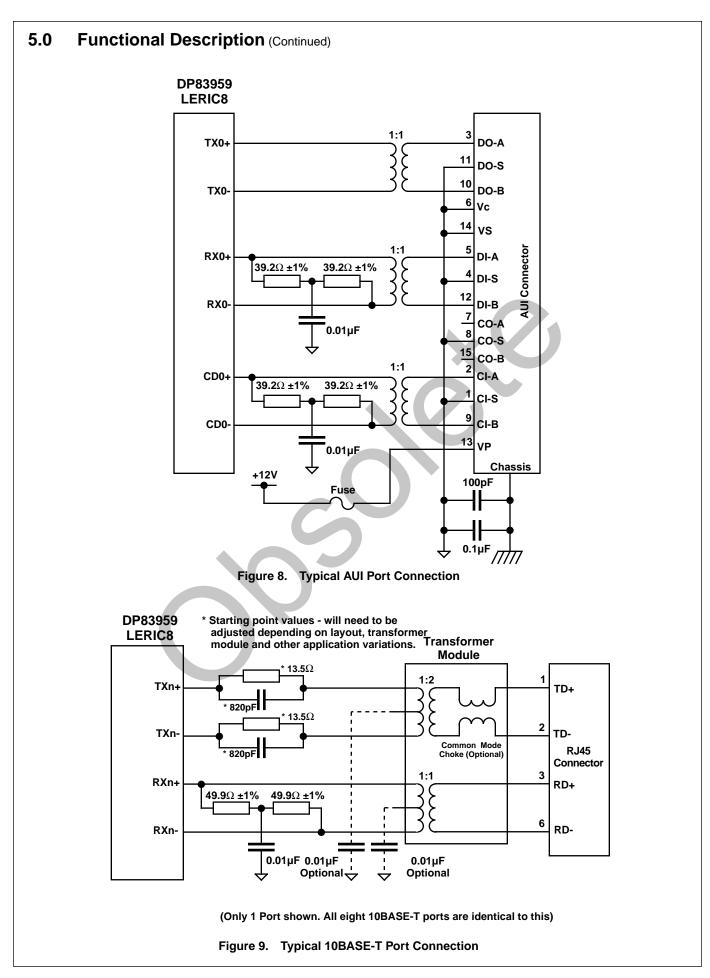
# 5.15 10BASE-T PORTS 1-8

The DP83959 will directly support up to 8 10BASE-T ports. Figure 9 shows a typical 10BASE-T port connection.

Each of the 10BASE-T ports uses 4 signal pins on the DP83959 package (two for transmit outputs and two for receive inputs) plus a shared power and ground. This minimal configuration is possible due to the 10BASE-T filtering and waveshaping being implemented internal to the device's transmit circuitry. The DP83959 still requires the use of receive filtering and termination and transmit source impedance matching resistors external to the device. Decoupling capacitors may also be required from the center taps of the transmit and receive isolation transformers.

On transmit, the 10BASE-T ports of the DP83959 requires the use of 1:2 step-up transformers in order to generate the correct transmit output drive voltage. Common mode chokes may not be required to meet emissions standards if the layout guidelines are followed.

On receive, the 10BASE-T ports of the DP83959 requires the use of 1:1 transformers. Filtering may be required to reduce high frequency interference.


| Pin     | Mnemonic | Min Mode Function                                                                                                   |
|---------|----------|---------------------------------------------------------------------------------------------------------------------|
| D0      | ACOL     | Any Collision: Asserted when a collision occurs on any of this LERIC8's ports.                                      |
| D1      | AREC     | Any Receive: Asserted when any of this LERIC8's ports experiences a data or collision packet on its receive inputs. |
| D2      | JAB      | Jabber: Asserted when this LERIC8 experiences a Jabber protect condition.                                           |
| D3      | APART    | Any Partition: Asserted when any of this LERIC8's ports is partitioned.                                             |
| RA[4:0] | -        | No function: Don't care                                                                                             |
| /STR    | -        | Strobe: Used to latch the Min mode information into an external latch (e.g. '374)                                   |

### Table 4 LERIC8 Min Mode LED Function

### DP83959 LERIC8

| DP83959<br>LERIC8 |    |       |             |                |                |               |                |                |                | 2              |                |                                          |
|-------------------|----|-------|-------------|----------------|----------------|---------------|----------------|----------------|----------------|----------------|----------------|------------------------------------------|
| D0                | 53 | ACOL  | -           | Port1<br>LINK  | Port2<br>LINK  | Port3<br>LINK | Port4<br>LINK  | Port5<br>LINK  | Port6<br>LINK  | Port7<br>LINK  | Port8<br>LINK  |                                          |
| D1                | 54 | AREC  | AUI<br>COL  | Port1<br>COL   | Port2<br>COL   | Port3<br>COL  | Port4<br>COL   | Port5<br>COL   | Port6<br>COL   | Port7<br>COL   | Port8<br>COL   | Maximum<br>Mode                          |
| D2                | 55 | JAB   | AUI<br>REC  | Port1<br>REC   | Port2<br>REC   | Port3<br>REC  | Port4<br>REC   | Port5<br>REC   | Port6<br>REC   | Port7<br>REC   | Port8<br>REC   | LED<br>Data<br>(1 indicates              |
| D3                | 56 | APART | AUI<br>PART | Port1<br>PART  | Port2<br>PART  | Port3<br>PART | Port4<br>PART  | Port5<br>PART  | Port6<br>PART  | Port7<br>PART  | Port8<br>PART  | LED ON,<br>0 indicates<br>LED OFF)       |
| RA0               | 59 | -     | -           | Port1<br>BDPOL | Port2<br>BDPOL |               | Port4<br>BDPOL | Port5<br>BDPOL | Port6<br>BDPOL | Port7<br>BDPOL | Port8<br>BDPOL |                                          |
| RA1               | 60 | 0     | 1           | 0              | 1              | 0             | 1              | 0              | 1              | 0              | 1              |                                          |
| RA2               | 61 | 0     | 0           | 1              | 1              | 0             | 0              | 1              | 1              | 0              | 0              | Maximum<br>Mode<br>LED                   |
| RA3               | 62 | 0     | 0           | 0              | 0              | 1             | 1              | 1              | 1              | 0              | 0              | Address<br>(Cycles from<br>0000 to 1001) |
| RA4               | 63 | 0     | 0           | 0              | 0              | 0             | 0              | 0              | 0              | 1              | 1              |                                          |
| STR               | 36 |       |             |                |                |               |                |                |                |                |                |                                          |

Figure 7. LERIC8 Max Mode LED Function/Mapping



# 6.0 LERIC8 Registers

# 6.1 REGISTER ADDRESS MAP

The LERIC8's register address map is shown below. Since the data path is only a nibble wide interface, each register has two addresses, with the most significant address bit (RA4) used to select either the lower or upper nibble of the register byte information. Each byte wide register can be thought of as having data bits D[7:0], so that for the lower nibble bits D[3:0] are presented on D[3:0] respectively and for the upper nibble, bits D[7:4] are presented on D[3:0] respectively. Register descriptions in the following sections are given in the byte wide notation, D[7:0].

| Address<br>RA[4:0]<br>(4 3210) | Register                                 |
|--------------------------------|------------------------------------------|
| 0 0000                         | LERIC8 Status - Lower Nibble             |
| 1 0000                         | LERIC8 Status - Upper Nibble             |
| 0 0001                         | Port0 (AUI) Status/Config - Lower Nibble |
| 1 0001                         | Port0 (AUI) Status/Config - Upper Nibble |
| 0 0010                         | Port1 Status/Config - Lower Nibble       |
| 1 0010                         | Port1 Status/Config - Upper Nibble       |
| 0 0011                         | Port2 Status/Config - Lower Nibble       |
| 1 0011                         | Port2 Status/Config - Upper Nibble       |
| 0 0100                         | Port3 Status/Config - Lower Nibble       |
| 1 0100                         | Port3 Status/Config - Upper Nibble       |
| 0 0101                         | Port4 Status/Config - Lower Nibble       |
| 1 0101                         | Port4 Status/Config - Upper Nibble       |
| 0 0110                         | Port5 Status/Config - Lower Nibble       |
| 1 0110                         | Port5 Status/Config - Upper Nibble       |
| 0 0111                         | Port6 Status/Config - Lower Nibble       |
| 1 0111                         | Port6 Status/Config - Upper Nibble       |
| 0 1000                         | Port7 Status/Config - Lower Nibble       |
| 1 1000                         | Port7 Status/Config - Upper Nibble       |
| 0 1001                         | Port8 Status/Config - Lower Nibble       |
| 1 1001                         | Port8 Status/Config - Upper Nibble       |

www.national.com

# 6.0 LERIC8 Registers (Continued)

# 6.2 LERIC8 STATUS REGISTER

Address:

RA4 - RA0 0 0000 - lower nibble 1 0000 - upper nibble

| Bit | Bit Name | Access | Bit Description                                                                                                                                                                                                                                |
|-----|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D0  | /ACOL    | RO     | Any Collision:<br>0 = A collision is occurring at one or more of this LERIC8's ports<br>1 = No collisions                                                                                                                                      |
| D1  | /AREC    | RO     | Any Receive:<br>0 = One of this LERIC8's ports is the current data or collision receiver<br>1 = No data packet or collision reception within this LERIC8                                                                                       |
| D2  | /JAB     | RO     | Jabber Protect:<br>0 = This LERIC8 has been forced into the Jabber Protect state by one of<br>its ports or by another port on another LERIC8 connected to this LERIC8's<br>Inter-LERIC bus<br>1 = No Jabber Protect conditions exist currently |
| D3  | /APART   | RO     | Any Partition:<br>0 = One or more ports of this LERIC8 are partitioned<br>1 = No ports are partitioned                                                                                                                                         |
| D4  | Reserved | RO     | Reserved - Don't care                                                                                                                                                                                                                          |
| D5  | Reserved | RO     | Reserved - Don't care                                                                                                                                                                                                                          |
| D6  | Reserved | RO     | Reserved - Don't care                                                                                                                                                                                                                          |
| D7  | Reserved | RO     | Reserved - Don't care                                                                                                                                                                                                                          |

Key: RO = Read Only, R/W = Read Write.

# 6.0 LERIC8 Registers (Continued)

# 6.3 P

PORT 0 (AUI) STATUS/CONFIGURATION REGISTER ss: RA4 - RA0

Address:

0 0001 - lower nibble 1 0001 - upper nibble

| Bit | Bit Name | Access | Bit Description                                                                                                                                                                                                                           |
|-----|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D0  | Reserved | RO     | Reserved - Don't care                                                                                                                                                                                                                     |
| D1  | /COL     | RO     | Collision:<br>0 = A collision is happening or occurred during the current packet<br>1 = No collisions have occurred (as yet) in the current packet                                                                                        |
| D2  | /REC     | RO     | Receive:<br>0 = This port is now, or has been, the receive source of data packet or<br>collision information for the current network event<br>1 = This port is not, and has not been, the receive source for the current<br>network event |
| D3  | /PART    | R/W    | Partition:<br>0 = This port is currently partitioned<br>1 = This port is not currently partitioned<br>Writing a 1 to this bit forces segment reconnection and partition state<br>machine reset. Writing a 0 to this bit has no effect.    |
| D4  | Reserved | RO     | Reserved - Don't care                                                                                                                                                                                                                     |
| D5  | Reserved | RO     | Reserved - Don't care                                                                                                                                                                                                                     |
| D6  | Reserved | RO     | Reserved - Don't care                                                                                                                                                                                                                     |
| D7  | DISPT    | R/W    | Disable Port:<br>0 = Port operates as defined by normal repeater operations<br>1 = All port activity is prevented                                                                                                                         |

Key: RO = Read Only, R/W = Read Write.

# 6.0 LERIC8 Registers (Continued)

# 6.4 PORTS 1-8 (10BASE-T) STATUS/CONFIGURATION REGISTERS

Address:

RA4 - RA0 0 0010 to 0 1001 - lower nibble 1 0010 to 1 1001 - upper nibble

| Bit | Bit Name | Access | Bit Description                                                                                                                                                                                                                                                                                                                      |
|-----|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D0  | /GDLNK   | R/W    | Good Link:<br>0 = Link pulses are being received by this port<br>1 = Link pulses are not being received by this port<br>Writing a 1 to this bit will cause the 10BASE-T transceiver not to<br>transmit or monitor the reception of link pulses. Writing a 0 to this bit<br>will return the 10BASE-T transceiver to normal operation. |
| D1  | /COL     | RO     | Collision:<br>0 = A collision is happening or occurred during the current packet<br>1 = No collisions have occurred (as yet) in the current packet                                                                                                                                                                                   |
| D2  | /REC     | RO     | Receive:<br>0 = This port is now, or has been, the receive source of data packet or<br>collision information for the current network event<br>1 = This port is not, and has not been, the receive source for the<br>current network event                                                                                            |
| D3  | /PART    | R/W    | Partition:<br>0 = This port is currently partitioned<br>1 = This port is not currently partitioned<br>Writing a 1 to this bit forces segment reconnection and partition state<br>machine reset. Writing a 0 to this bit has no effect.                                                                                               |
| D4  | SQL      | R/W    | Squelch Level:<br>0 = This port's 10BASE-T transceiver operates with normal IEEE<br>defined receive squelch level<br>1 = This port's 10BASE-T transceiver operates with reduced receive<br>squelch level                                                                                                                             |
| D5  | POL      | RO     | Polarity:<br>0 = This port's receive polarity is normal (not inverted)<br>1 = This port's receive polarity is inverted                                                                                                                                                                                                               |
| D6  | Reserved | R/W    | Reserved:<br>1 = LERIC8 factory test mode - Do not use.                                                                                                                                                                                                                                                                              |
| D7  | DISPT    | R/W    | Disable Port:<br>0 = Port operates as defined by normal repeater operations<br>1 = All port activity is prevented                                                                                                                                                                                                                    |

Key: RO = Read Only, R/W = Read Write.

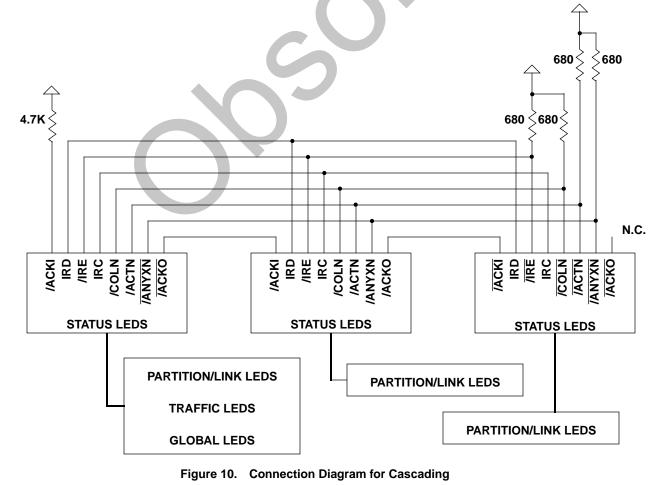
# 7.0 System Considerations

The DP83959 can be designed into several types of repeaters. The most common design is the unmanaged, stand-alone, 8-port repeater, where a single LERIC8 will be used to provide the repeater capabilities. For designs that require more than 8 ports, up to 3 LERIC8s may be cascaded on a single board.

### 7.1 CASCADING

Figure 10 shows the connection diagram for using 3 DP83959s in a single repeater. Most of the inter-LERIC bus is tied together. /ACKO of one device is connected to /ACKI of the next one. /ACKI on one end of the chain is tied high, while /ACKO on the other end is a no-connect.

### 7.2 IEEE CONFORMANCE


The LERIC8 was tested for IEEE 802.3 conformance in a repeater system. Without any resistive loading on the RTX and REQ pins, the repeater passed all conformance tests with the exception of Peak Differential Output Voltage ( $V_{OD}$  into a resistive load). With only one twisted pair port loaded and transmitting a packet, with the system running at 5.25 V in a 0 °C chamber, the output violated the Peak Differential Output Voltage ( $V_{OD}$  into a resistive load) marginally at the upper limit. With all eight twisted pair ports loaded and transmitting, and with the system running at 4.75 V in a 80 °C chamber, the output violated the Peak Differential Output Voltage ( $V_{OD}$  into a resistive load) marginally at the system, the output violated the Peak Differential Output Voltage ( $V_{OD}$  into a resistive load) marginally at the system, the output violated the Peak Differential Output Voltage ( $V_{OD}$  into a resistive load) marginally at the lower limit. Performance is also dependent on PCB layout.

The violation of this specification under these conditions will not affect a normal network. The LERIC8 passes the IEEE Output Waveform with Scaling Voltage template and the inverted template, both of which specify  $V_{OD}$  at the end of a cable. The LERIC8 has also undergone endurance testing in various platforms and has not shown any loss of data.

The RTX and REQ pins can be used to tune the internal transmit filter and wave shaping circuitry. The RTX input can be used to adjust the differential voltage ( $V_{OD}$ ) of all of the output drivers. By placing a resistor between RTX and  $V_{CC}$ , the peak-to-peak voltage will be increased. Conversely, connecting the resistor to GND will decrease  $V_{OD}$ .

The REQ input can be used to adjust the shape of the waveform for all outputs. By placing a resistor between REQ and  $V_{CC}$ , the amplitude of the pre-emphasis waveform will be increased. Conversely, connecting the resistor to GND will decrease the amplitude.

Caution should be taken when using RTX and REQ to make adjustments. The following IEEE parameters may be adversely affected by adjusting the amplitude or shape of the transmitted waveform, as well as PCB layout and design: Peak Differential Output Voltage, Harmonic Content, Output waveform with Scaling of Voltage template, Output Waveform with Scaling of Voltage inverted template, TD circuit Differential Output Impedance, Transmit Output Timing Jitter with Cable Model, and Transmit Output Timing Jitter without Cable Model.



# 8.0 DC Specifications

# **Absolute Maximum Ratings**

| Supply Voltage (V <sub>CC</sub> )                                  | -0.5V to 7.0V                   |
|--------------------------------------------------------------------|---------------------------------|
| DC Input Voltage (V <sub>IN</sub> )                                | -0.5V to V <sub>CC</sub> + 0.5V |
| DC Output Voltage (V <sub>OUT</sub> )                              | -0.5V to V <sub>CC</sub> + 0.5V |
| Power Dissipation (P <sub>D</sub> )                                | (Note 1) 4.5 W                  |
| Storage Temperature Range $(T_{STG})$                              | -65°C to 150°C                  |
| Lead Temp. (T <sub>L</sub> ) (Soldering, 10 sec)                   | 260°C                           |
| ESD Rating<br>(R <sub>ZAP</sub> = 1.5k, C <sub>ZAP</sub> = 120 pF) | 2.0 kV                          |

# **Recommended Operating Conditions**

| Supply Voltage (V <sub>CC</sub> )     | 5 Volts <u>+</u> 5% |
|---------------------------------------|---------------------|
| Ambient Temperature (T <sub>A</sub> ) | 0 to 70°C           |

Note: Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits.

# **DC Specifications**

 $T_{A}$  = 0°C to 70°C,  $V_{CC}$  = 5V  $\pm$  5% unless otherwise specified

| Symbol          | Description                                 | Conditions                                   | Min  | Тур | Max | Units |  |  |
|-----------------|---------------------------------------------|----------------------------------------------|------|-----|-----|-------|--|--|
| PROCESS         | PROCESSOR, LED, AND INTER-LERIC INTERFACES  |                                              |      |     |     |       |  |  |
| V <sub>OH</sub> | Minimum High Level Output Voltage           | I <sub>OH</sub> = -8 mA                      | 3.5  |     |     | V     |  |  |
| V <sub>OL</sub> | Minimum Low Level Output Voltage            | I <sub>OL</sub> = 8 mA                       |      |     | 0.4 | V     |  |  |
| V <sub>IH</sub> | Minimum High Level Input Voltage            |                                              | 2.0  |     |     | V     |  |  |
| V <sub>IL</sub> | Maximum Low Level Input Voltage             |                                              |      |     | 0.8 | V     |  |  |
| I <sub>IN</sub> | Input Current                               | $V_{IN} = V_{CC}$ or GND                     | -1.0 |     | 1.0 | μA    |  |  |
| I <sub>oz</sub> | Maximum TRI-STATE Output Leakage<br>Current | $V_{OUT} = V_{CC}$ or GND                    | -10  |     | 10  | μA    |  |  |
| I <sub>CC</sub> | Average supply current                      | $V_{IN} = V_{CC}$ or GND<br>$V_{CC} = 5.25V$ |      | 570 | 800 | mA    |  |  |

### AUI (PORT 0)

| V <sub>OD</sub> | Differential Output Voltage (TX ±)                                     | 78Ω Termination         | ± 550 |    | ± 1200 | mV |
|-----------------|------------------------------------------------------------------------|-------------------------|-------|----|--------|----|
| V <sub>OB</sub> | Differential Output Voltage Imbalance (TX $\pm$ ) (Note 2)             | 78Ω Termination         |       | 40 |        | mV |
| V <sub>U</sub>  | Undershoot Voltage (TX ±) (Note 2)                                     | 78 $\Omega$ Termination |       | 80 |        | mV |
| V <sub>DS</sub> | Differential Squelch Threshold (RX $\pm$ , CD $\pm$ )                  |                         | -175  |    | -300   | mV |
| V <sub>CM</sub> | Differential Input Common Mode Voltage (RX $\pm$ , CD $\pm$ ) (Note 2) |                         | 0     |    | 5.5    | V  |

### 10BASE-T (PORTS 1-8)

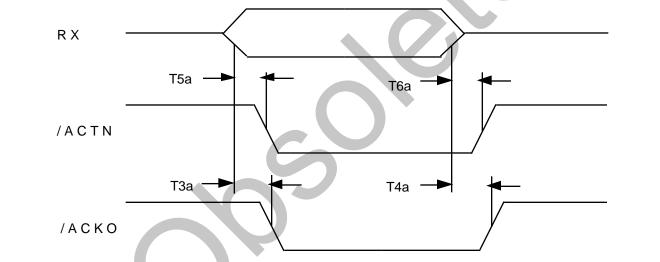
| V <sub>RON</sub> | Minimum Receive Squelch Threshold: | 1 200     |       | m)/ |
|------------------|------------------------------------|-----------|-------|-----|
|                  | Normal Mode                        | $\pm 300$ | ± 585 | mV  |
|                  | Reduced Mode                       | (Note 3)  | ± 340 | mV  |

Note 1: This value is the absolute maximum, and not intended to be used to calculate case temperature. A value of 1.8W can be used for the purpose of device heat calculations.

Note 2: This parameter is guaranteed by design and is not tested.

Note 3: The operation in Reduced mode is not gauranteed below 300 mV.

# 9.0 Switching Characteristics


# 9.1 PORT ARBITRATION /ACKI /ACKO

| Number | Symbol     | Parameter                | Min | Мах | Units |
|--------|------------|--------------------------|-----|-----|-------|
| T1     | ackilackol | /ACKI Low to /ACKO Low   |     | 26  | ns    |
| T2     | ackihackoh | /ACKI High to /ACKO High |     | 23  | ns    |

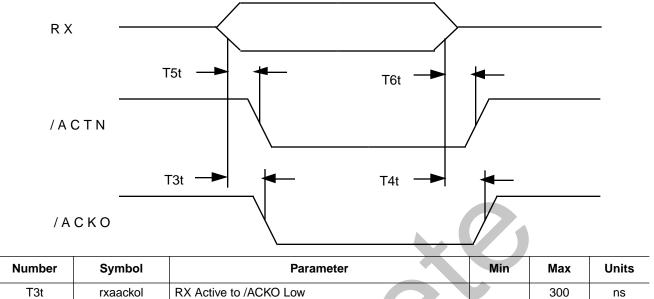
Note: Timing valid with no receive or collision activities.

### 9.2 RECEIVE - AUI PORT

Receive activity propagation start up and end delays for the AUI port.



| Number | Symbol   | Parameter                          | Min | Max | Units |
|--------|----------|------------------------------------|-----|-----|-------|
| T3a    | rxaackol | RX Active to /ACKO Low (Note 2)    |     | 66  | ns    |
| T4a    | rxiackoh | RX Inactive to /ACKO High (Note 1) |     | 235 | ns    |
| T5a    | rxaactnl | RX Active to /ACTN Low (Note 2)    |     | 75  | ns    |
| T6a    | rxiactnh | RX Inactive to /ACTN High (Note 1) |     | 235 | ns    |


Note: /ACKI assumed high.

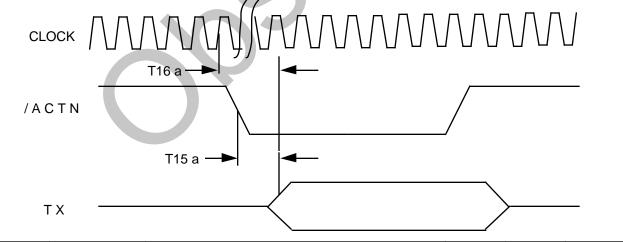
**Note 1:** This time includes EOP.

Note 2: This parameter assumes squelch triggers on negative edge of RX data.

# 9.3 RECEIVE - 10BASE-T PORTS

Receive activity propagation start up and end delays for 10BASE-T ports.



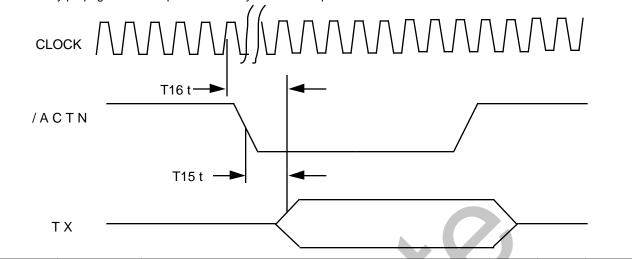

| T3t | rxaackol | RX Active to /ACKO Low             | 300 | ns |
|-----|----------|------------------------------------|-----|----|
| T4t | rxiackoh | RX Inactive to /ACKO High (Note 1) | 280 | ns |
| T5t | rxaactnl | RX Active to /ACTN Low             | 300 | ns |
| T6t | rxiactnh | RX Inactive to /ACTN High (Note 1) | 280 | ns |

Note: /ACKI assumed high.

**Note 1:** This time includes EOP.

# 9.4 TRANSMIT - AUI PORT

Transmit activity propagation start up and end delays for the AUI port.



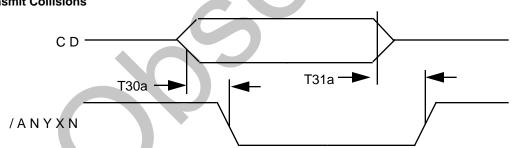

| Number | Symbol   | Parameter              | Min | Max | Units |
|--------|----------|------------------------|-----|-----|-------|
| T15a   | actnltxa | /ACTN Low to TX Active |     | 675 | ns    |
| T16a   | clkitxa  | CLOCK in to TX Active  |     | 45  | ns    |

Note: /ACKI assumed high.

# 9.5 TRANSMIT - 10BASE-T PORTS

Receive activity propagation start up and end delays 10BASE-T ports.

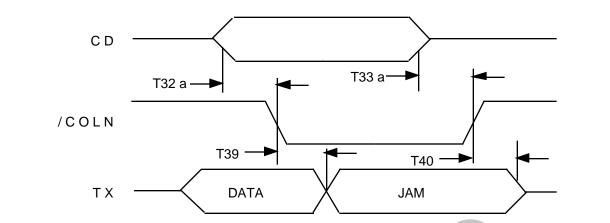



| Number | Symbol   |                        | Parameter |  | Min | Мах | Units |
|--------|----------|------------------------|-----------|--|-----|-----|-------|
| T15t   | actnltxa | /ACTN Low to TX Active |           |  |     | 790 | ns    |
| T16t   | clkitxa  | CLOCK in to TX Active  |           |  |     | 45  | ns    |
|        |          |                        |           |  |     |     |       |

Note: /ACKI assumed high.

### 9.6 COLLISION - AUI PORT

Collision activity propagation start up and end delays for the AUI port.

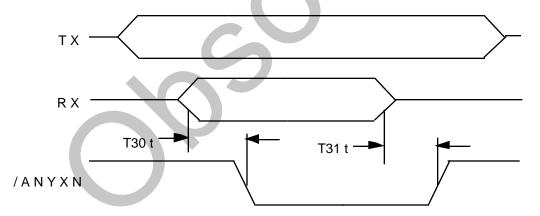

9.6.1 Transmit Collisions



| Number | Symbol    | Parameter                             | Min | Мах | Units |
|--------|-----------|---------------------------------------|-----|-----|-------|
| T30a   | cdaanyxnl | CD Active to /ANYXN Low               |     | 85  | ns    |
| T31a   | cdianyxnh | CD Inactive to /ANYXN High (Note 1,2) |     | 285 | ns    |

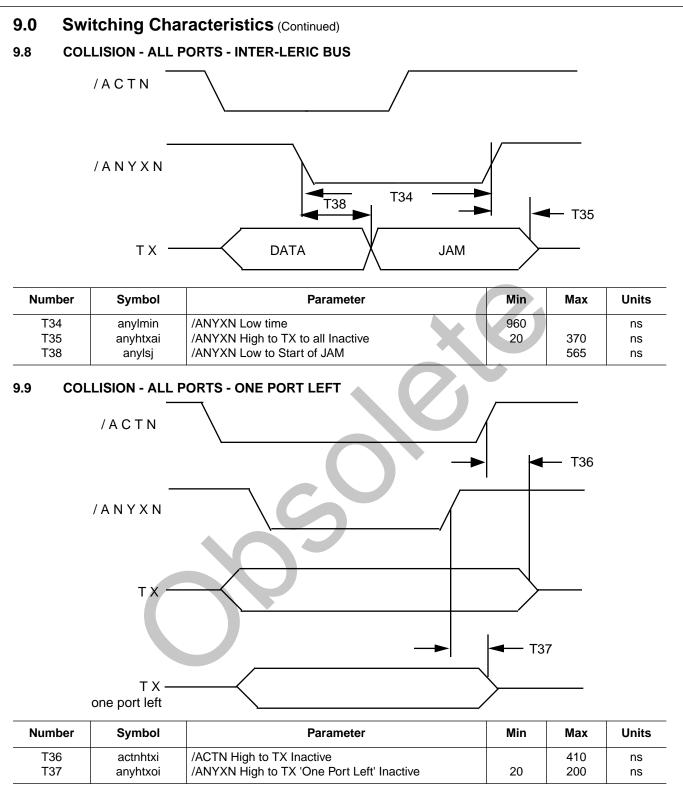
**Note 1:** TX collision extension has already been performed and no other port is driving /ANYXN. **Note 2:** Includes TW2.

### 9.6.2 Receive Collisions



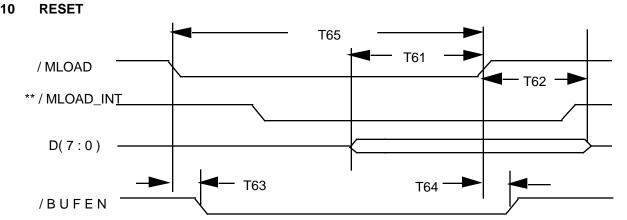

| Number       | Symbol               | Parameter                                                     |   | Min        | Max        | Units    |
|--------------|----------------------|---------------------------------------------------------------|---|------------|------------|----------|
| T32a<br>T33a | cdacolna<br>cdicolni | CD Active to /COLN Low<br>CD Inactive to /COLN High           | X | $\bigcirc$ | 75<br>215  | ns<br>ns |
| T39<br>T40   | colnljs<br>colnhje   | /COLN Low to Start of JAM<br>/COLN High toEnd of JAM (Note 1) |   |            | 400<br>585 | ns<br>ns |

Note 1: Reception ended before /COLN goes high.


### 9.7 COLLISION - 10BASE-T PORTS

Collision activity propagation start up and end delays for 10BASE-T ports

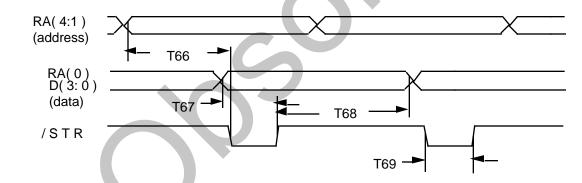



| Number | Symbol   | Parameter                                  | Min | Max | Units |
|--------|----------|--------------------------------------------|-----|-----|-------|
| T30t   | colaanyl | Collision Active to /ANYXN Low             |     | 800 | ns    |
| T31t   | colianyh | Collision Inactive to /ANYXN High (Note 1) |     | 450 | ns    |

Note 1: TX collision extension has already been performed and no other port is asserting /ANYXN.

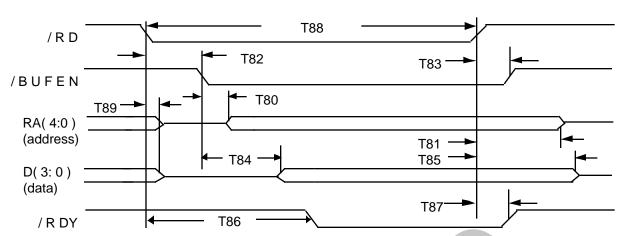


Note: 96 bits of JAM have already been propagated.


9.10



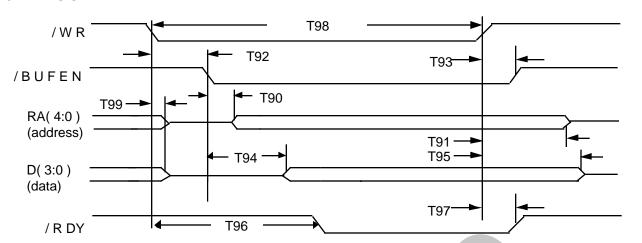
\*\* /MLOAD\_INT is the internal signal which is delayed 5 cycles from the external /MLOAD signal


| Number | Symbol   | Parameter                  | Min | Max | Units |
|--------|----------|----------------------------|-----|-----|-------|
| T61    | resdats  | Data Setup                 | 20  |     | ns    |
| T62    | resdath  | Data Hold                  | 20  |     | ns    |
| T63    | reslbufl | /MLOAD Low to /BUFEN Low   |     | 35  | ns    |
| T64    | reshbufh | /MLOAD High to /BUFEN High |     | 35  | ns    |
| T65    | resw     | /MLOAD Width               | 800 |     | ns    |

#### LED STROBE 9.11



| Number | Symbol  | Parameter            | Min | Max | Units |
|--------|---------|----------------------|-----|-----|-------|
| T66    | stradrs | Strobe Address Setup | 70  | 100 | ns    |
| T67    | strdats | Strobe DATA SETUP    | 35  | 55  | ns    |
| T68    | strdath | Strobe Data Hold     | 145 | 165 | ns    |
| T69    | strw    | Strobe Width         | 30  | 65  | ns    |


# 9.12 REGISTER READ

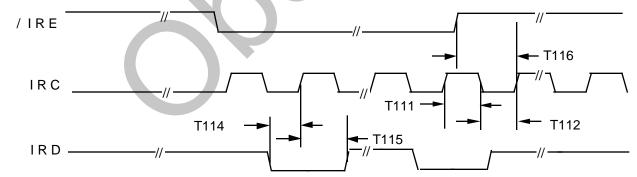


| Number | Symbol   | Parameter                     | Min | Max | Units |
|--------|----------|-------------------------------|-----|-----|-------|
| T80    | rdadrs   | Address Setup from /BUFEN Low | 0   | 85  | ns    |
| T81    | rdadrh   | Address Hold after /RD High   | 0   |     | ns    |
| T82    | rdlbufl  | /RD Low to /BUFEN Low         | 80  | 355 | ns    |
| T83    | rdhbufh  | /RD High to /BUFEN High       |     | 35  | ns    |
| T84    | bufldatv | /BUFEN Low to Data Valid      |     | 190 | ns    |
| T85    | rddath   | Data Hold After /RD High      | 60  |     | ns    |
| T86    | rdlrdyl  | /RD Low to /RDY Low           | 340 | 585 | ns    |
| T87    | rdhrdyh  | /RD High to /RDY High         |     | 30  | ns    |
| T88    | rdw      | /RD Width                     | 650 |     | ns    |
| T89    | rdtr     | /RD Low to D(3:0) TRI-STATE   | 80  | 355 | ns    |

Note: Minimum high time between read/write cycles is 100 ns.

9.13 REGISTER WRITE




| Number     | Symbol             | Parameter                                                    | Min | Max       | Units    |
|------------|--------------------|--------------------------------------------------------------|-----|-----------|----------|
| T90<br>T91 | wradrs<br>wradrh   | Address Setup from /BUFEN Low<br>Address Hold after /WR High | 000 | 14        | ns<br>ns |
| T92<br>T93 | wrlbufl<br>wrhbufh | /WR Low to /BUFEN Low<br>/WR High to /BUFEN High             | 80  | 355<br>35 | ns<br>ns |
| T94<br>T95 | wradatv<br>wrdath  | /BUFEN Low to Data Valid<br>Data Hold After /WR High         | 0   | 160       | ns<br>ns |
| T96<br>T97 | wrlrdyl<br>wrhrdyh | /WR Low to /RDY Low<br>/WR High to /RDY High                 | 340 | 585<br>30 | ns<br>ns |
| T98        | wrw                | /WR Width                                                    | 650 |           | ns       |
| T99        | wrtr               | /WR Low to D(3:0) TRI-STATE                                  | 80  | 355       | ns       |

Note: Minimum high time between read/write cycles is 100 ns.

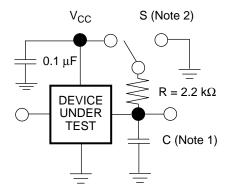
#### **INTER-LERIC BUS (PACKET OUTPUT)** 9.14 -// / A C T N \_//\_ ·// T105 --//-·// / IRE T109 -T106 T110 IRC \_\_\_\_\_ -// T101 T108 T102 T103 T107 -I R D —— -//-

| Number | Symbol      | Parameter                           | Min | Мах | Units |
|--------|-------------|-------------------------------------|-----|-----|-------|
| T101   | ircoh       | IRC Output Duty Cycle High Time     | 40  | 60  | %     |
| T102   | ircol       | IRC Output Duty Cycle Low Time      | 40  | 60  | %     |
| T103   | ircoc       | IRC Output Cycle Time               | 90  | 110 | ns    |
| T105   | actnolireol | /ACTN Output Low to /IRE Output Low | 500 |     | ns    |
| T106   | ireolirca   | /IRE Output Low to IRC Active       |     | 1.8 | μs    |
| T107   | irdov       | IRD Output Valid from IRC           |     | 10  | ns    |
| T108   | irdos       | IRD Output Stable Valid Time        | 90  |     | ns    |
| T109   | ircohireh   | IRC Output High to /IRE High        | 30  | 70  | ns    |
| T110   | ircclks     | Number of IRCs after /IRE high      | 5   |     | clks  |

# 9.15 INTER-LERIC BUS (PACKET INPUT)



| Number | Symbol    | Parameter                                                                                    | Min | Max | Units |
|--------|-----------|----------------------------------------------------------------------------------------------|-----|-----|-------|
| T111   | ircih     | IRC Input High Time                                                                          | 20  |     | ns    |
| T112   | ircil     | IRC Input Low Time                                                                           | 20  |     | ns    |
| T114   | irdisirc  | IRD Input Setup to IRC                                                                       | 5   |     | ns    |
| T115   | irdihirc  | IRD Input Hold from IRC                                                                      | 10  |     | ns    |
| T116   | ircihireh | Set Up Time of the Rising Edge of IRE to the Rising Edge of IRC for End of Packet Generation | 25  | 75  | ns    |


# 10.0 AC Timing Test Conditions

#### **GENERAL TEST CONDITIONS** 10.1

All AUI specifications are valid only if the mandatory isolation transformer is employed and all differential signals are measured at the AUI connector (not at the DP83959 LERIC8 directly).

| Input Pulse Levels (TTL/CMOS)                   | GND to 3.0V                      |
|-------------------------------------------------|----------------------------------|
| Input Rise and Fall Times<br>(TTL/CMOS)         | 5 ns                             |
| Input and Output<br>Reference Levels (TTL/CMOS) | 1.5V                             |
| Input Pulse Levels (Differential)               | -350 to -1315 mV                 |
| Input and Output<br>Reference Levels (Diff.)    | 50% Point of the Differential    |
| TRI-STATE Reference Levels                      | Float ( $\Delta V$ ) $\pm 0.5 V$ |

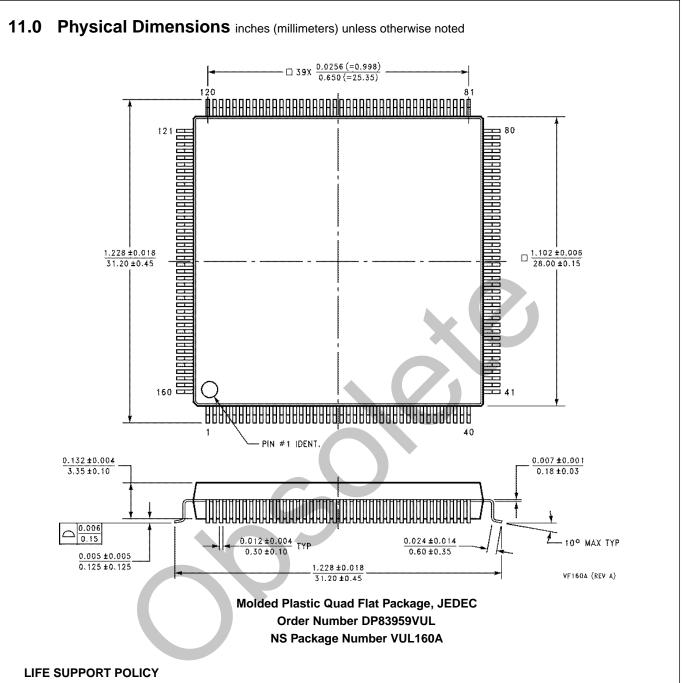
Output Load (See Figure below)



Note 1: 100 pF, includes scope and test jig capacitance.

**Note 2:** S1 = Open during timing tests for push pull outputs. S1 =  $V_{CC}$  for  $V_{OL}$  test.

S1 = GND for V<sub>OH</sub> test.


 $S1 = V_{CC}$  for High Impedance to active low, and active low to High Impedance measurements.

S1 = GND for High Impedance to active high, and active high to High Impedance measurements.

#### 10.2 CAPACITANCE

T<sub>A</sub> = 25°C, f = 1 MHz

| Symbol           | Parameter          | Тур | Units |
|------------------|--------------------|-----|-------|
| C <sub>IN</sub>  | Input Capacitance  | 7   | pF    |
| C <sub>OUT</sub> | Output Capacitance | 7   | pF    |



NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

 
 National Semiconductor Europe

 Fax:
 (+49) 0-180-530 85 86 europe.support@nsc.com Deutsch Tel:

 Deutsch Tel:
 (+49) 0-180-530 85 85 English Tel:

 
 niconductor
 NNational Semiconductor Asia Pacific

 (+49) 0-180-530 85 86
 Customer Response Group

 rope.support@nsc.com
 Tel: 65-254-4466

 (+49) 0-180-530 85 85
 Fax: 65-250-4466

 (+49) 0-180-532 78 32
 Email: sea.support@nsc.com
 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.national.com

### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products               |                                 | Applications                  |                                   |
|------------------------|---------------------------------|-------------------------------|-----------------------------------|
| Audio                  | www.ti.com/audio                | Communications and Telecom    | www.ti.com/communications         |
| Amplifiers             | amplifier.ti.com                | Computers and Peripherals     | www.ti.com/computers              |
| Data Converters        | dataconverter.ti.com            | Consumer Electronics          | www.ti.com/consumer-apps          |
| DLP® Products          | www.dlp.com                     | Energy and Lighting           | www.ti.com/energy                 |
| DSP                    | dsp.ti.com                      | Industrial                    | www.ti.com/industrial             |
| Clocks and Timers      | www.ti.com/clocks               | Medical                       | www.ti.com/medical                |
| Interface              | interface.ti.com                | Security                      | www.ti.com/security               |
| Logic                  | logic.ti.com                    | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Power Mgmt             | power.ti.com                    | Transportation and Automotive | www.ti.com/automotive             |
| Microcontrollers       | microcontroller.ti.com          | Video and Imaging             | www.ti.com/video                  |
| RFID                   | www.ti-rfid.com                 |                               |                                   |
| OMAP Mobile Processors | www.ti.com/omap                 |                               |                                   |
| Wireless Connectivity  | www.ti.com/wirelessconnectivity |                               |                                   |
|                        |                                 | u Hama Dawa                   | a O a Al a a m                    |

**TI E2E Community Home Page** 

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated