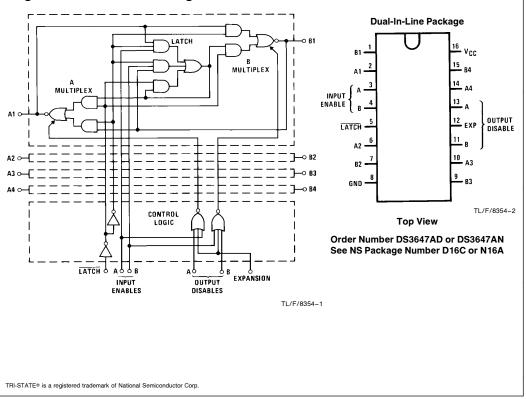


DS3647A Quad TRI-STATE® MOS Memory I/O Register

General Description

The DS3647A is a 4-bit I/O buffer register intended for use in MOS memory systems. This circuit employs a fall-through latch for data storage. This method of latching captures the data in parallel with the output, thus eliminating the delays encountered in other designs. This circuit uses Schottky-clamped transistor logic for minimum propagation delay and employs PNP input transistors so that input currents are low, allowing a large fan-out for this circuit which is needed in a memory system.


Two pins per bit are provided, and data transfer is bi-directional so that the register can handle both input and output data. The direction of data flow is controlled through the input enables. The latch control, when taken low, will cause the register to hold the data present at that time and display it at the outputs. Data can be latched into the register independent of the output disables or EXPANSION input. Either or both of the outputs may be taken to the high-impedance state with the output disables. The EXPANSION pin disables both outputs to facilitate multiplexing with other I/O registers on the same data lines.

The DS3647A features TRI-STATE outputs. The "B" port outputs are designed for use in bus organized data transmission systems and can sink 80 mA and source -5.2 mA. Data going from port "A" to port "B" and from "B" to port "A" is inverted in the DS3647A.

Features

- PNP inputs minimize loading
- Fall-through latch design
- Propagation delay of only 15 ns
- TRI-STATE outputs
- EXPANSION control
- Bi-directional data flow
- TTL compatible
- Transmission line driver output

Logic and Connection Diagrams

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V
Input Voltage -1.5V to +7V

Storage Temperature Range -65° to +150°C

Maximum Power Dissipation* at 25°C

Molded Package 1476 mW Lead Temperature (Soldering, 10 seconds) 300°C

*Derate molded package 10.0 mW/° C above 25°C.

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
Temperature (T _A)			
DS3647A	0	+70	° C

Electrical Characteristics (Notes 2 and 3)

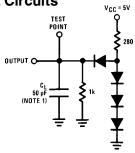
Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IN(1)}	Logic "1" Input Voltage			2.0			V
V _{IN(0)}	Logic "0" Input Voltage					0.8	٧
I _{IN(1)}	Logic "1" Input Current		Latch, Disable Inputs		0.1	40	μΑ
		V _{CC} =5.5V, V _{IN} =5.5V	Expansion		0.2	80	μΑ
		VGC 5.54, VIN 5.54	A Ports, B Ports		0.2	100	μΑ
			Enable Inputs		0.4	200	μΑ
I _{IN(0)}	Logic "0" Input Current		Latch, Disable Inputs		-25	-250	μΑ
		V _{CC} =5.5V, V _{IN} =0.5V	Expansion		-50	-500	μΑ
		VCC 5.54, VIN 6.54	A Ports, B Ports		-50	-500	μΑ
			Enable, Inputs		-0.1	-1.25	mA
V _{CLAMP}	Input Clamp Voltage	V _{CC} =4.5V, I _{IN} =-18 mA		-0.6	-1.2	V	
V _{OL(A)}	Logic "0" Output Voltage A Ports	V _{CC} =4.5V, I _{OL} =20 mA		0.4	0.5	V	
Va. (5)	Logic "0" Output Voltage	V _{CC} =4.5V	I _{OL} =30 mA		0.3	0.4	V
V _{OL(B)}	B Ports	VCC - 4.5V	I _{OL} =50 mA		0.4	0.5	V
V _{OH(A)} Logic "1" Output Voltage		$I_{OH} = -1 \text{ mA}$ $V_{CC} = 5V$		3.0	3.4		V
VOH(A)	A Ports	IOH I IIIA	V _{CC} =4.5V	2.5	3.4		V
V _{OH(B)}	Logic "1" Output Voltage	I _{OH} = -5.2 mA, (Note 4)	V _{CC} =5V	2.9	3.3		V
▲OH(R)	B Ports	10H 5.2 IIIA, (Note 4)	V _{CC} =4.5V	2.4	3.3		V
I _{OS(A)}	Output Short-Circuit Current A Port	V _{CC} =4.5V to 5.5V, V _{OUT} =0V, (Note 4)		-50	-80	-120	mA
I _{OS(B)}	Output Short-Circuit Current B Port	V _{CC} =4.5V to 5.5V, V _{OUT} =0V, (Note 4)		-70	-120	-180	mA
Icc	Power Supply Current	Exp=3V, A Ports=0V, B Ports Open, All Other Pins=0V	DS3647A		100	140	mA
		Enable A, Latch = 3V, A Ports = 0V, B Ports Open, All Other Pins = 0V	DS3647A		70	105	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C range. All typicals are given for $V_{CC}=5V$ and $T_A=25$ °C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted.

Note 4: Only one output at a time should be shorted.


Symbol	Parameter	Conditions	Min	Тур	Max	Units
DATA TRA	NSFER B PORT TO A PORT					
t _{pd0}	Propagation Delay to a Logic "0"	CL = 50 pF, R _L = 280Ω , (Figures 1 and 4)		7.5	15	ns
t _{pd1}	Propagation Delay to a Logic "1"	$C_L = 50 \text{ pF}, R_L = 280\Omega,$ (Figures 1 and 4)		6.0	12	ns
A PORT CO	ONTROL FROM OUTPUT DISABLE A IN	IPUT				
t_{LZ}	Delay to High Impedance from Logic "0"	(Figures 1 and 5)		13	20	ns
t _{HZ}	Delay to High Impedance from Logic "1"	(Figures 1 and 6)		14	20	ns
t _{ZL}	Delay to Logic "0" from High Impedance	(Figures 1 and 7)		10	15	ns
t _{ZH}	Delay to Logic "1" from High Impedance	(Figures 1 and 8)		25	35	ns
DATA TRA	NSFER A PORT TO B PORT, DS3647A					
t _{pd0}	Propagation Delay to a Logic "0"	$C_L = 50 \text{ pF}, R_L = 100 \Omega,$ (Figures 2 and 4)		6.5	12	ns
t _{pd1}	Propagation Delay to a Logic "1"	$C_L = 50 \text{ pF}, R_L = 100 \Omega,$ (Figures 2 and 4)		8.0	15	ns
B PORT CO	ONTROL FROM OUTPUT DISABLE B IN	IPUT, DS3647A				
t_LZ	Delay to High Impedance from Logic "0"	(Figures 2 and 5)		15	25	ns
t _{HZ}	Delay to High Impedance from Logic "1"	(Figures 2 and 6)		14	20	ns
t _{ZL}	Delay to Logic "0" from High Impedance	(Figures 2 and 7)		10	16	ns
t _{ZH}	Delay to Logic "1" from High Impedance	(Figures 2 and 8)		25	35	ns
LATCH SE	T-UP AND HOLD TIMES, ALL DEVICES	}				
t _{SET-UP}	Set-Up Time of Data Input Before Latch Goes Low		5	0		ns
t _{HOLD}	Hold Time of Data Input After Latch Goes Low		10	5		ns

Product Description

Device Number	B Port To A Port Function	A Port To B Port Function	A Port Outputs	B Port Outputs
DS3647A	Inverting	Inverting	TRI-STATE	TRI-STATE

Trut	Truth Table								
Input Enables		·		tput ibles	Expansion	A Ports	B Ports	Comments	
Α	В		Α	В		A1-A4	B1-B4		
1	0	1	0	0	0	Hi-Z	Ā	Data in on A, output to B	
0	1	1	0	0	0	B	Hi-Z	Data in on B, output to A	
1	0	0	0	0	0	Hi-Z	Ā	Data stored which is present when latch goes low	
0	1	0	0	0	0	B	Hi-Z	Data stored which is present when latch goes low	
1	0	x	0	1	0	Hi-Z	Hi-Z	Both A and B in Hi-Z state, Data in on A, may be latched	
0	1	х	1	0	0	Hi-Z	Hi-Z	Both A and B in Hi-Z state, Data in on B, may be latched	
х	х	х	х	х	1	Hi-Z	Hi-Z	Both A and B in Hi-Z state	

AC Test Circuits

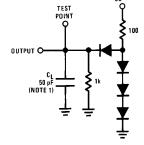
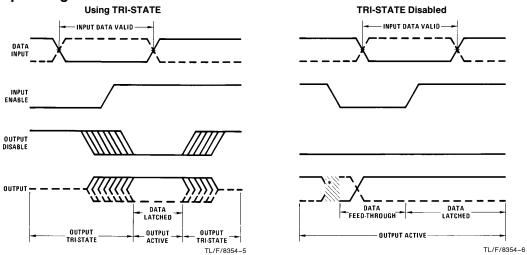
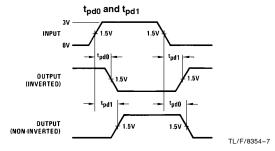



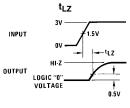
FIGURE 1. A Port Load

FIGURE 2. Note 1: C_L includes probe and jig capacitance.

TL/F/8354-4 FIGURE 2. B Port Load


Operating Waveforms

TL/F/8354-3


*When the Input Enable makes a negative transition, the output will be indeterminate for a short duration. The negative transition of the Input Enable normally occurs during a don't-care timing state at the output.

Switching Time Waveforms

Input Characteristics: f = 1 MHz, t_R = t_F \leq 5 ns (10% to 90% points), duty cycle = 50%, Z $_{OUT}$ = 50 Ω

FIGURE 4

TL/F/8354-8

TL/F/8354-9



FIGURE 6

TL/F/8354-10

TL/F/8354-11

FIGURE 5

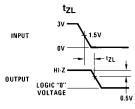


FIGURE 7

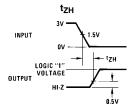
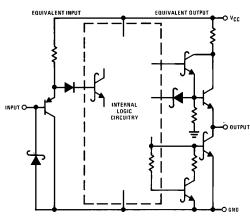
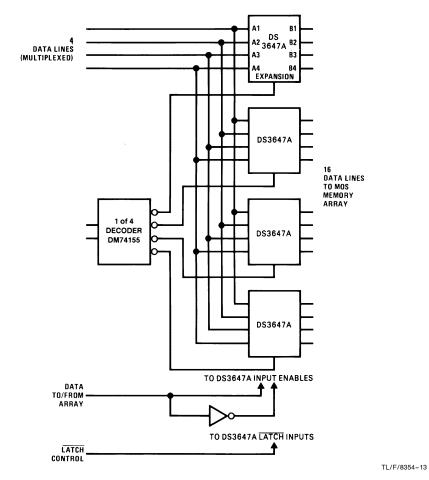
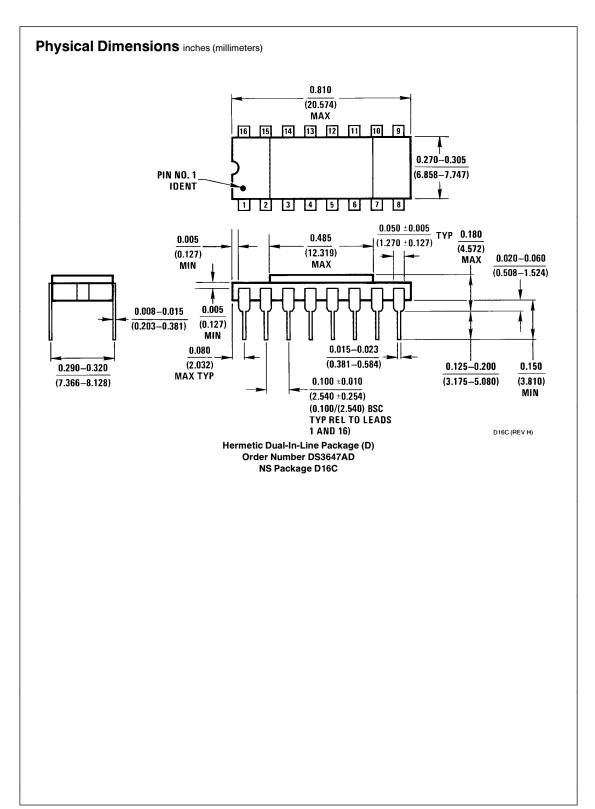



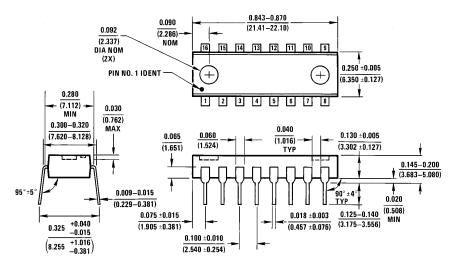
FIGURE 8

Schematic Diagram




Note. Data pins A1-A4 and B1-B4 consist of an input and an output tied together.

TL/F/8354-12


Typical Application

The diagram below shows how the DS3647A can be used as a register capable of multiplexing data lines.

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N) Order Number DS3647AN NS Package N16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

N16A (REV E)

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: onlyeg@tevnz.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408