DS90CR581

www.ti.com

SNLS103A -MAY 2004-REVISED SEPTEMBER 2011

DS90CR581 LVDS Transmitter 24-Bit Color Flat Panel Display (FPD) Link

Check for Samples: DS90CR581

FEATURES

- Up to 140 Megabyte/sec Bandwidth
- Narrow Bus Reduces Cable Size and Cost
- 290 mV Swing LVDS Devices for Low EMI
- Low Power CMOS Design
- Power Down Mode
- PLL Requires no External Components
- Low Profile 56-lead TSSOP Package
- Rising Edge Data Strobe
- Compatible with TIA/EIA-644 LVDS Standard

DESCRIPTION

The DS90CR581 transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. At a transmit clock frequency of 40 MHz, 24 bits of RGB data and 4 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY, CNTL) are transmitted at a rate of 280 Mbps per LVDS data channel. Using a 40 MHz clock, the data throughput is 140 Megabytes per second. This transmitter is intended to interface to any of the FPD Link receivers.

The chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

BLOCK DIAGRAM

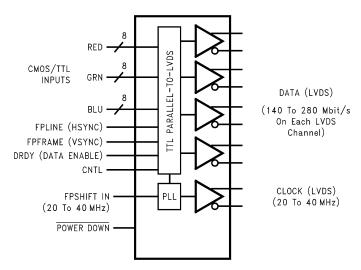
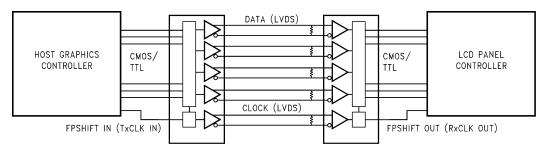


Figure 1. DS90CR581 See Package Number DGG

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TRI-STATE is a registered trademark of Texas Instruments.


All other trademarks are the property of their respective owners.

ONEO 100/1 W/11 2004 REVIOLD OF TEMBER 2

www.ti.com

Application

Connection Diagram

DS90CR581 56 TxIN4 V_{CC} 55 TxIN3 TxIN5 54 TxIN2 TxIN6 53 GND TxIN7 52 TxIN 1 GND 50 TxIN0 TxIN8 TxIN9 TxIN27 49 LVDS GND TxIN10 -48 TxOUTO $v_{\rm CC}$. PARALLEL-TO-LVDS 10 47 -TxOUTO+ TxIN11 46 TxOUT1-11 TxIN12 -45 TxOUT1+ 12 TxIN13 GND 13 44 LVDS V_{CC} TxIN14 14 43 LVDS GND 42 TxOUT2-15 TxIN15 -TxIN16 16 41 -TxOUT2+ \exists $V_{CC} = \frac{17}{18}$ TxIN17 TxCLKOUT-39 TxCLKOUT+ 38 TxOUT3-TxIN18 -37 TxIN19 - TxOUT3+ 36 LVDS GND $\frac{2}{\text{GND}} \frac{2}{22}$ 35 PLL GND TxIN20 $\frac{22}{23}$ 34 PLL V_{CC} TxIN21 PLL TxIN22 24 TxIN23 25 33 PLL GND - PWR DWN v_{cc} TxCLK IN 27 30 TxIN24 TxIN26 29 GND TxIN25 -

DS90CR581 TSSOP Package See Package Number DGG

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

www.ti.com

SNLS103A -MAY 2004-REVISED SEPTEMBER 2011

Absolute Maximum Ratings(1)(2)

Supply Voltage (V _{CC})				
CMOS/TTL Input Voltage				
LVDS Driver Output Voltage				
LVDS Output Short Circuit Duration			continuous	
Junction Temperature				
Storage Temperature Range				
Lead Temperature (Soldering, 4 sec.)				
Maximum Package Power Dissipation @ +25°C	DGG (TSSOP) Package:	DS90CR581	1.63W	
	Package Derating:	DS90CR581	12.5 mW/°C above +25°C	
This device does not meet 2000V ESD rating. (3)		·	1	

^{(1) &}quot;Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be ensured. They are not meant to imply that the device should be operated at these limits. "Electrical Characteristics" specify conditions for device operation.

Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage (V _{CC})	4.5	5.0	5.5	V
Operating Free Air Temperature (T _A)	-10	+25	+70	°C
Receiver Input Range	0		2.4	V
Supply Noise Voltage (V _{CC})			100	mV_{P-P}

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
CMOS/T1	TL DC SPECIFICATIONS	·					
V _{IH}	High Level Input Voltage			2.0		V _{CC}	V
V _{IL}	Low Level Input Voltage			GND		0.8	V
V _{CL}	Input Clamp Voltage	I _{CL} = −18 mA			-0.79	-1.5	V
I _{IN}	Input Current	$V_{IN} = V_{CC}$, GND, 2.5V or 0).4V		±5.1	±10	μA
Ios	Output Short Circuit Current	V _{OUT} = 0V				-120	mA
LVDS DR	RIVER DC SPECIFICATIONS						
V _{OD}	Differential Output Voltage	$R_L = 100\Omega$		250	290	450	mV
ΔV_{OD}	Change in V _{OD} between					35	mV
	Complimentary Output States						
Vos	Offset Voltage ⁽¹⁾			1.1	1.25	1.375	V
ΔV_{OS}	Change in V _{OS} between					35	mV
	Complimentary Output States						
V _{OH}	High Level Output Voltage				1.3	1.6	V
V _{OL}	Low Level Output Voltage			0.9	1.01		V
Ios	Output Short Circuit Current	$V_{OUT} = 0V$, $R_L = 100\Omega$			-2.9	-5	mA
I _{OZ}	Output TRI-STATE® Current	Power Down = 0V, V _{OUT} =	= 0V or V _{CC}		±1	±10	μA
TRANSM	ITTER SUPPLY CURRENT	•					
I _{CCTW}	Transmitter Supply Current,	$R_L = 100\Omega, C_L = 5 pF,$	f = 32.5 MHz		34	51	mA
	Worst Case	Worst Case Pattern (Figure 2, Figure 3)	f = 37.5 MHz		36	53	mA

(1) V_{OS} previously referred as V_{CM}

⁽²⁾ If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.

⁽³⁾ ESD Rating: HBM (1.5 k Ω , 100 pF) PLL V $_{\text{CC}} \ge$ 1000V All other pins \ge 2000V EIAJ (0 Ω , 200 pF) \ge 150V

SNLS103A -MAY 2004-REVISED SEPTEMBER 2011

Electrical Characteristics (continued)

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
I _{CCTG}	Transmitter Supply Current,	$R_L = 100\Omega$, $C_L = 5 pF$, $f = 32.5 MHz$			27	47	mA
	16 Grayscale	Grayscale Pattern (Figure 3, f = 37.5 MHz Figure 4)			28	48	mA
I _{CCTZ}	Transmitter Supply Current,	Power Down = Low			1	25	μA
	Power Down						

Transmitter Switching Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Min	Тур	Max	Units	
LLHT	LVDS Low-to-High Transition Time (Figure 4)			0.75	1.5	ns
LHLT	LVDS High-to-Low Transition Time (Figure 4)			0.75	1.5	ns
TCIT	TxCLK IN Transition Time (Figure 5)				8	ns
TCCS	TxOUT Channel-to-Channel Skew (1) (Figure 6)				350	ps
TPPos0	Transmitter Output Pulse Position for Bit 0 (Figure 12)	f = 20 MHz	-200	150	350	ps
TPPos1	Transmitter Output Pulse Position for Bit 1		6.3	7.2	7.5	ns
TPPos2	Transmitter Output Pulse Position for Bit 2		12.8	13.6	14.6	ns
TPPos3	Transmitter Output Pulse Position for Bit 3		20	20.8	21.5	ns
TPPos4	Transmitter Output Pulse Position for Bit 4		27.2	28	28.5	ns
TPPos5	Transmitter Output Pulse Position for Bit 5		34.5	35.2	35.6	ns
TPPos6	Transmitter Output Pulse Position for Bit 6		42.2	42.6	42.9	ns
TPPos0	Transmitter Output Pulse Position for Bit 0 (Figure 12)	f = 40 MHz	-100	100	300	ps
TPPos1	Transmitter Output Pulse Position for Bit 1		2.9	3.3	3.9	ns
TPPos2	Transmitter Output Pulse Position for Bit 2		6.1	6.6	7.1	ns
TPPos3	Transmitter Output Pulse Position for Bit 3		9.7	10.2	10.7	ns
TPPos4	Transmitter Output Pulse Position for Bit 4		13	13.5	14.1	ns
TPPos5	Transmitter Output Pulse Position for Bit 5		17	17.4	17.8	ns
TPPos6	Transmitter Output Pulse Position for Bit 6		20.3	20.8	21.4	ns
TCIP	TxCLK IN Period (Figure 7)		25	Т	50	ns
TCIH	TxCLK IN High Time(Figure 7)		0.35T	0.5T	0.65T	ns
TCIL	TxCLK IN Low Time (Figure 7)		0.35T	0.5T	0.65T	ns
TSTC	TxIN Setup to TxCLK IN (Figure 7)	f = 20 MHz	14			ns
		f = 40 MHz	8			ns
THTC	TxIN Hold to TxCLK IN (Figure 7)		2.5	2		ns
TCCD	TxCLK IN to TxCLK OUT Delay @ 25°C, V _{CC} = 5.0V (Figure 8)		5		9.7	ns
TPLLS					10	ms
TPDD	Transmitter Powerdown Delay (Figure 11)				100	ns

(1) This limit based on bench characterization.

AC Timing Diagrams

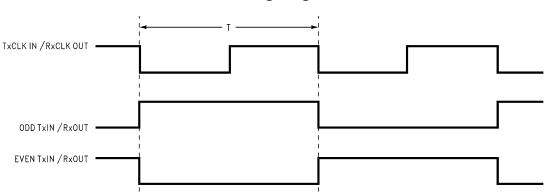
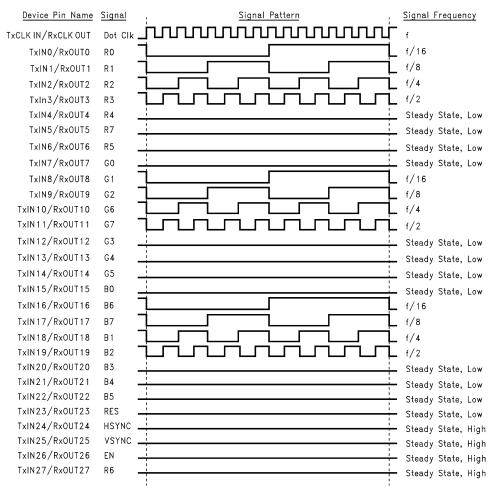



Figure 2. "Worst Case" Test Pattern

- (1) The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O and CMOS/TTL I/O.
- (2) The 16 grayscale test pattern tests device power consumption for a "typical" LCD display pattern. The test pattern approximates signal switching needed to produce groups of 16 vertical stripes across the display.
- (3) Figure 2 and Figure 3 show a rising edge data strobe (TxCLK IN/RxCLK OUT).
- (4) Recommended pin to signal mapping. Customer may choose to define differently.

Figure 3. "16 Grayscale" Test Pattern

Copyright © 2004–2011, Texas Instruments Incorporated

Figure 4. DS90CR581 (Transmitter) LVDS Output Load and Transition Timing

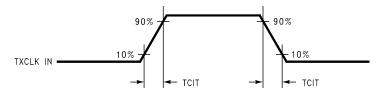
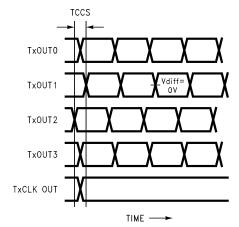



Figure 5. DS90CR581 (Transmitter) Input Clock Transition Time

- (1) Measurements at $V_{diff} = 0V$
- (2) TCCS measured between earliest and latest initial LVDS edges.
- (3) TxCLK OUT Differential High→Low Edge for DS90CF581 TxCLK OUT Differential Low→High Edge for DS90CR581

Figure 6. DS90CR581 (Transmitter) Channel-to-Channel Skew

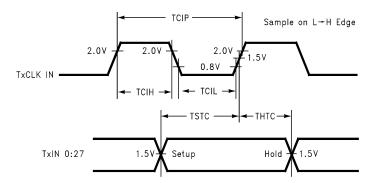


Figure 7. DS90CR581 (Transmitter) Setup/Hold and High/Low Times

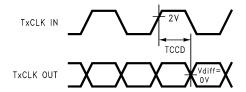


Figure 8. DS90CR581 (Transmitter) Clock In to Clock Out Delay

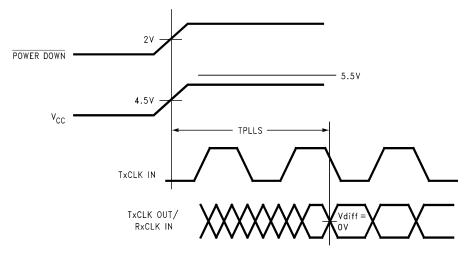


Figure 9. DS90CR581 (Transmitter) Phase Lock Loop Set Time

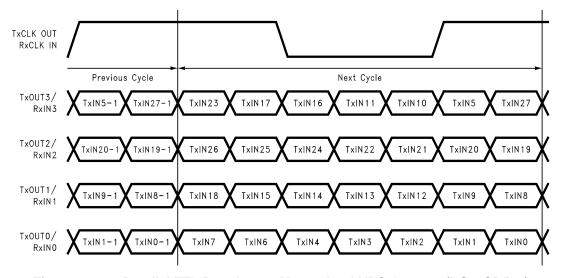


Figure 10. 28 Parallel TTL Data Inputs Mapped to LVDS Outputs (DS90CR581)

Product Folder Links: DS90CR581

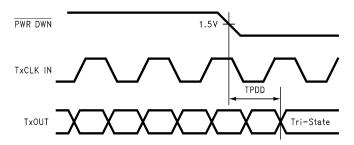


Figure 11. Transmitter Powerdown Delay

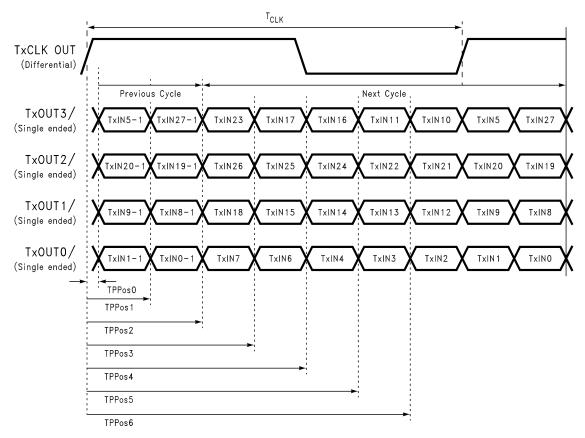


Figure 12. Transmitter LVDS Output Pulse Position Measurement

www.ti.com

SNLS103A -MAY 2004-REVISED SEPTEMBER 2011

DS90CR581 Pin Description—FPD Link Transmitter

Pin Name	I/O	No.	Description
TxIN	I	28	TTL Level input. This includes: 8 Red, 8 Green, 8 Blue, and 4 control lines (FPLINE, FPFRAME, DRDY, CNTL). (Also referred to as HSYNC, VSYNC and DATA ENABLE)
TxOUT+	0	4	Positive LVDS differential data output
TxOUT-	0	4	Negative LVDS differential data output
FPSHIFT IN	ı	1	TTL level clock input. The rising edge acts as data strobe.
TxCLK OUT+	0	1	Positive LVDS differential clock output
TxCLK OUT-	0	1	Negative LVDS differential clock output
PWR DOWN	ı	1	TTL level input. Assertion (low input) TRI-STATES the outputs, ensuring low current at power down.
V _{CC}	ı	4	Power supply pins for TTL inputs
GND	ı	5	Ground pins for TTL inputs
PLL V _{CC}	ı	1	Power supply pin for PLL
PLL GND	Į	2	Ground pins for PLL
LVDS V _{CC}	I	1	Power supply pin for LVDS outputs
LVDS GND	Į	3	Ground pins for LVDS outputs

Product Folder Links: DS90CR581

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>