DS9639A

Dual Differential Line Receiver

General Description

The DS9639A is a Schottky dual differential line receiver which has been specifically designed to satisfy the requirements of EIA Standards RS-422, RS-423 and RS-232C. In addition, the DS9639A satisfies the requirements of MILSTD 188-114 and is compatible with the International Standard CCITT recommendations. The DS9639A is suitable for use as a line receiver in digital data systems, using either single ended or differential, unipolar or bipolar transmission. It requires a single 5.0 V power supply and has Schottky TTL compatible outputs. The DS9639A has an operational input common mode range of $\pm 7.0 \mathrm{~V}$ either differentially or to ground.

Features

- Dual channel
- Single 5.0 V supply
- Satisfies EIA Standards RS-422, RS-423 and RS-232C
- Built-in $\pm 35 \mathrm{mV}$ hysteresis
- High input common mode voltage range
- High input impedance
- TTL compatible outputs
- Schottky technology

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified please contact the National Office/Distributors for avallability	ces are required, iconductor Sales d specifications.
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature Molded DIP (soldering, 10 sec .)	$265{ }^{\circ} \mathrm{C}$
$V_{c c}$ Lead Potential to Ground	-0.5 V to +7.0 V
Input Potential to Ground Lead	$\pm 25 \mathrm{~V}$
Differential Input Voltage	$\pm 25 \mathrm{~V}$
Output Differential to Ground Lead	-0.5 V to 5.5 V

Output Sink Current
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Molded Package
930 mW
${ }^{-}$Derate molded DIP package $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
Recommended Operating Conditions

	Min	Typ	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.75	5.0	5.25	V
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	0	25	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless otherwise specified (Notes 2 \& 3)

Symbol	Parameter	Conditions (Note 1)	Min	Typ	Max	Units
$V_{\text {TH }}$	Differential Input Threshold Voltage (Note 5)	$-7.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7.0 \mathrm{~V}$	-0.2		+ 0.2	V
$V_{\text {TH(R) }}$	Differential Input Threshold Voltage (Note 6)	$-7.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7.0 \mathrm{~V}$	-0.4		+0.4	V
1	Input Current (Note 7)	$\mathrm{V}_{1}=10 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$		1.1	3.25	mA
		$\mathrm{V}_{1}=-10 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$		-1.6	-3.25	
$\mathrm{V}_{\text {OL }}$	Output Voltage LOW	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.35	0.5	V
V OH	Output Voltage HIGH	$\mathrm{IOH}^{\text {a }}=-1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	2.5	3.5		V
los	Output Short Circuit Current (Note 4)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$	-40	-75	-100	mA
ICC	Supply Current	$\begin{aligned} & V_{\mathrm{CC}}=\text { Max, } \mathrm{V}_{1}+=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{1}-=G N D \end{aligned}$		35	50	mA
$V_{\text {HYST }}$	Input Hysteresis	$\mathrm{V}_{\mathrm{CM}}= \pm 7.0 \mathrm{~V}$ (See Curves)		70		mV

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tpLH	Propagation Delay Time Low to High	See AC Test Circuit		55	85	ns
tpHL	Propagation Delay Time High to Low	See AC Test Circuit		50	75	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS 9639 A . All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specitied.
Note 4. Only one output at a time should be shorted.
Note 5: $\mathrm{V}_{\text {DIFF }}$ (Differential Input Voltage) $=\left(\mathrm{V}_{1+}\right)-\left(\mathrm{V}_{1-}\right) . \mathrm{V}_{\mathrm{CM}}$ (Common Mode Input Voltage) $=\mathrm{V}_{1+}$ or V_{1-}.
Note 6: $500 \Omega \pm 1 \%$ in series with inputs.
Note 7: The input not under test is tied to ground.

Equivalent Circuit

Typical Input/Output Transfer Characteristics

TL/F/9623-3
FIGURE 2

FIGURE 2a

AC Test Circuit and Switching Time Waveform

TL/F/9623-5
Notes:
C_{L} includes jig and probe capacitance.
All diodes are FD700 or equivalent.
FIGURE 3. AC Test CIrcuit and Waveforms

V_{1}
Amplitude: 1.0 V
Offset: 0.5V
Pulse Width: 500 ns
PRR: 1 MHz
$\mathrm{t}_{\mathrm{t}}=\mathrm{t}_{\mathrm{t}} \leq 5.0 \mathrm{~ns}$
FIGURE 3a

Typical Applications

TL/F/9623-7
Notes:
$R_{t} \geq 50 \Omega$ for RS-422 operation.
R_{t} combined with input impedance of receivers must be greater than 90Ω.
FIGURE 4. RS-422 System Application (FIPS 1020) Differential Simplex Bus Transmission

