

3.3V CMOS 1-BIT TO 4-BIT ADDRESS REGISTER/DRIVER WITH 3-STATE OUTPUTS AND BUS-HOLD

IDT74ALVCH162832

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.50mm pitch TSSOP package
- Extended commercial range of 40°C to +85°C
- $Vcc = 3.3V \pm 0.3V$, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- Vcc = 2.5V ± 0.2 V
- CMOS power levels (0.4 µ W typ. static)
- Rail-to-Rail output swing for increased noise margin

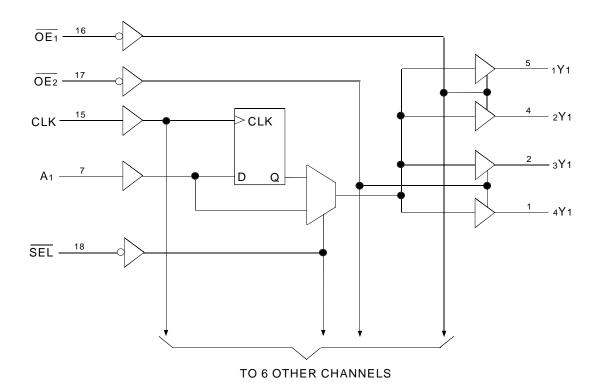
Drive Features for ALVCH162832:

- Balanced Output Drivers: ±12mA
- Low switching noise

APPLICATIONS:

- Memory subsystems
- · PC motherboards and servers
- Workstations
- Telecommunication applications

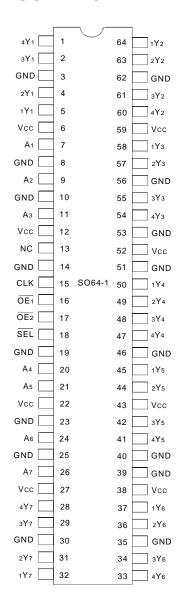
DESCRIPTION:


This 1-bit to 4-bit address register/driver is built using advanced dual metal CMOS technology. This device is ideal for use in applications in which a single address bus is driving four separate memory locations. The ALVCH162832 can be used as a buffer or a register, depending on the logic level of the select (SEL) input.

When \overline{SEL} is a logic high, the device is in the buffer mode. The outputs follow the inputs and are controlled by the two output-enable (\overline{OE}) controls. Each \overline{OE} controls two groups of seven outputs. When \overline{SEL} is logic low, the device is in the register mode. The register is an edge-triggered D-type flip-flop. On the positive transition of the clock (CLK) input, data at the A inputs is stored in the internal registers. \overline{OE} controls operate the same as in buffer mode.

The ALVCH162832 has series resistors in the device output structure which will significantly reduce line noise when used with light loads. This driver has been designed to drive ± 12 mA at the designated threshold levels.

The ALVCH162832 has "bus-hold" which retains the inputs' last state whenever the input bus goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.


FUNCTIONAL BLOCK DIAGRAM

EXTENDED COMMERCIAL TEMPERATURE RANGE

OCTOBER 1999

PIN CONFIGURATION

TSSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description	
OEx	3-State Output Enable Inputs (Active LOW)	
CLK	Register Input Clock	
SEL	Select Input	
Ax	Data Inputs ⁽¹⁾	
хҮх	3-State Outputs	
NC	No Internal Connection	

NOTE:

1. These pins have "Bus-Hold." All other pins are standard inputs, outputs, or I/Os.

ABSOLUTE MAXIMUM RATING (1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage	- 0.5 to + 4.6	V
	with Respect to GND		
VTERM(3)	Terminal Voltage	– 0.5 to	V
	with Respect to GND	Vcc + 0.5	
Tstg	Storage Temperature	– 65 to + 150	°C
Іоит	DC Output Current	- 50 to + 50	mA
lik	Continuous Clamp Current,	± 50	mA
	Vi < 0 or Vi > Vcc		
Іок	Continuous Clamp Current, Vo < 0	- 50	mA
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

- Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
CI/O	I/O Port Capacitance	VIN = 0V	7	9	pF
NOTE					NEW16link

FUNCTION TABLE (1)

	Inputs					
OEx	SEL	CLK	Ах	хҮх		
Н	Χ	Χ	Χ	Z		
L	Н	Χ	L	L		
L	Н	Х	Н	Н		
L	L	1	L	L		
L	L	1	Н	Н		

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

↑ = LOW-to-HIGH Transition

^{1.} As applicable to the device type.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C to +85°C

Symbol	Parameter	Tes	t Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
Іін	Input HIGH Current	Vcc = 3.6V	VI = VCC	_	_	± 5	μA
lıL	Input LOW Current	Vcc = 3.6V	VI = GND	_	_	± 5	
I OZH	High Impedance Output Current	VCC = 3.6V	Vo = Vcc	_	_	± 10	μA
lozl	(3-State Output pins)		Vo = GND	_	_	± 10	μA
Vik	Clamp Diode Voltage	VCC = 2.3V, IIN = - 18mA	·	_	- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V Vin = GND or Vcc			0.1	40	μA
Iccz	,						
Δlcc	Quiescent Power Supply Current Variation	•	One input at Vcc – 0.6V, other inputs at Vcc or GND		_	750	μA

NOTE:

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	_	_	μA
IBHL			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	VCC = 2.3V	VI = 1.7V	- 45	_	_	μA
IBHL			VI = 0.7V	45	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	± 500	μA
Івньо							

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

NEW16link

^{1.} Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test	Test Conditions ⁽¹⁾		Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	_	V
		VCC = 2.3V	IOH = -4mA	1.9	_	
			IOH = -6mA	1.7	_	
		Vcc = 2.7V	IOH = -4mA	2.2	_	
			IOH = -8mA	2	_	
		Vcc = 3.0V	IOH = -6mA	2.4	_	
			IOH = - 12mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IOL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IOL = 4mA	_	0.4	
			IOL = 6mA	_	0.55	
		Vcc = 2.7V	IOL = 4mA	_	0.4	
		IoL = 8mA	_	0.6		
		Vcc = 3.0V	IOL = 6mA	_	0.55	
			IoL = 12mA	_	0.8	NEW16lin

NOTE:

OPERATING CHARACTERISTICS, TA = 25°C

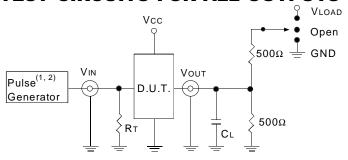
			Vcc = 2.5V ± 0.2V	Vcc = 3.3V ± 0.3V	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
CPD	Power Dissipation Capacitance	CL = 0pF, f = 10Mhz	119	132	pF
	Outputs enabled				рг
CPD	Power Dissipation Capacitance		22	25	nГ
	Outputs disabled				pF

SWITCHING CHARACTERISTICS (1)

		Vcc = 2.	5V ± 0.2V	Vcc =	= 2.7V	Vcc = 3.3	3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
fmax		150	_	150	_	150	_	MHz
tplh tphl	Propagation Delay Ax to xYx	1.1	4.7		4.8	1.5	4.3	ns
tplh tphl	Propagation Delay CLK to xYx	1	5.3		5.3	1.4	4.7	ns
tplh tphl	Propagation Delay SEL to xYx	1.1	6		6.2	1.5	4.8	ns
tpzh tpzl	Output Enable Time OEx to xYx	1	5.9		5.9	1.1	5.1	ns
tphz tplz	Output Disable Time OEx to xYx	1.4	6.3		5.4	1.6	5.1	ns
tw	Pulse Duration, CLK HIGH or LOW	3.3	_	3.3	_	3.3	_	ns
tsu	Setup Time, Ax data before CLK↑	2	_	2	_	1.6	_	ns
tн	Hold Time, Ax data after CLK↑	0.7	_	0.5	_	1.1	_	ns
tsk(o)	Output Skew ⁽²⁾						500	ps

NOTES:

- 1. See test circuits and waveforms. $T_A = -40^{\circ}C$ to $+85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.


^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = -40°C to +85°C.

TEST CIRCUITS AND WAVEFORMS:

TEST CONDITIONS

	<u></u>					
Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ = 2.7V	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit		
VLOAD	6	6	2 x Vcc	٧		
VIH	2.7	2.7	Vcc	٧		
V T	1.5	1.5	Vcc / 2	٧		
VLZ	300	300	150	mV		
VHZ	300	300	150	mV		
CL	50	50	30	pF		
	·		•	NEW16link		

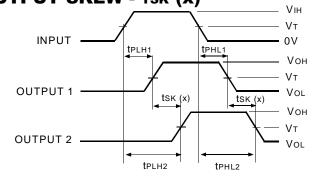
TEST CIRCUITS FOR ALL OUTPUTS

ALVC Link

DEFINITIONS:

CL= Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zout of the Pulse Generator.

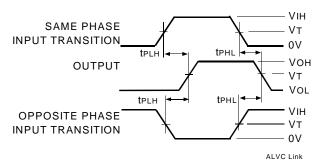

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	NEW16link

OUTPUT SKEW - TSK (x)


tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|

ALVC Link

NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY

ENABLE AND DISABLE TIMES

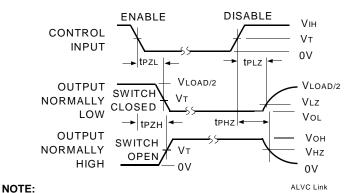
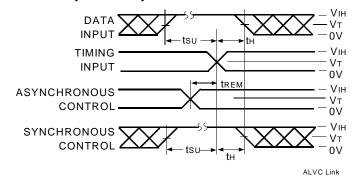
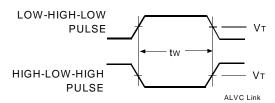
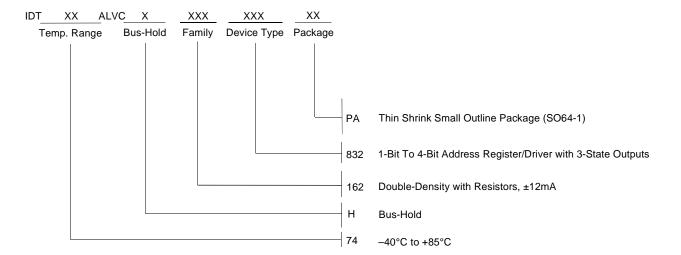




Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.