

IP1M10 SERIES IP1M12 SERIES

TOP VIEW

J Package – 14 Pin Ceramic DIP N Package – 14 Pin Plastic DIP

D Package - 14 Pin Plastic (150) SOIC

200mA DUAL H-BRIDGE

FEATURES

- 200mA Continuous output current per bridge (100mA for IP1Mxx, IP2Mxx)
- Internal output clamp diodes
- Hysteretic logic inputs for noise immunity
- Thermal shutdown protection
- Peak current limit protection
- Crossover current blanking
- Separate +5V logic supply for minimum power dissipation (1M10 series only)
- Separate +7V to +36V logic supply (1M12 series only)

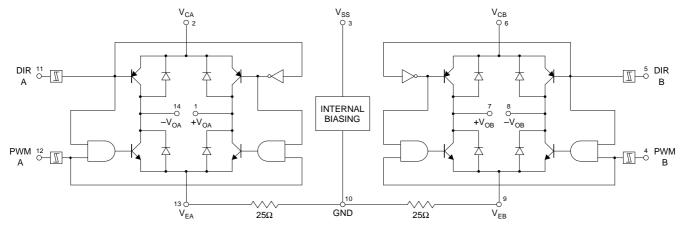
Order Information

Part	J–Pack	N-Pack	D-14	Temp.	
Number	14 Pin	14 Pin	14 Pin	Range	Note:
IP1M10	V			-55 to +125°C	To order, add the package identifier to the part number.
IP2M10	V	~	~	-40 to +85°C	eg. IP1M10J
IP3M10	V	~	~	0 to +70°C	IP2M10D-14
IP1M12	~			-55 to +125°C	IP3M12N
IP2M12	/	~	~	-40 to +85°C	II OWIZIV
IP3M12	V	~	~	0 to +70°C	

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

$\overline{V_{SS}}$	Logic Supply Voltage	1M10 Series	+7V
		1M12 Series	+40V
V_{C}	Driver Supply Voltage		+40V
	Logic Inputs		-0.3 to +40V
	Output Current		±250mA
	Peak Output Current		Internally Limited
P_D	Power Dissipation Derate above 50°C	$T_A = 25^{\circ}C$	1W 10mW/°C
P_{D}	Power Dissipation Derate above 25°C	$T_C = 25^{\circ}C$	2W 16mW/°C
T_J	Operating Junction Temperature		See Ordering Information
T_{STG}	Storage Temperature Range		−65 to +150°C

IP1M10 SERIES IP1M12 SERIES


DESCRIPTION

The IP1M10 and IP1M12 series each contain two full H-bridge power drivers capable of delivering 200 mA continuous output current per channel (100mA for 1Mxx / 2Mxx). Each bridge may be run from its own supply voltage of up to 36V and is controlled by 2 high voltage protected logic level inputs with internal hysteresis for noise immunity.

Protection features include thermal shutdown, peak current limiting, crossover current blanking, and internal output clamp diodes. Logic supply current is provided by a separate pin so that standby power dissipation may be minimised. The IP1M10 series requires a +5V logic supply while the IP1M12 series requires a logic supply voltage of +7V or greater, and is typically used in single supply applications.

The IP1M10 and IP1M12 are available in a 14 lead ceramic DIP while the IP2M10, IP2M12, IP3M10, IP3M12 are available in the 14 lead ceramic DIP, 14 lead plastic DIP, and 14 lead plastic SOIC packages.

BLOCK DIAGRAM

INP	UTS	OUTI	PUTS
DIR	PWM	+V _O	-V _O
LOW	LOW	Z*	HIGH
LOW	HIGH	LOW	HIGH
HIGH	LOW	HIGH	Z*
HIGH	HIGH	HIGH	LOW

^{*} Z = High Impedance.

RECOMMENDED OPERATING CONDITIONS

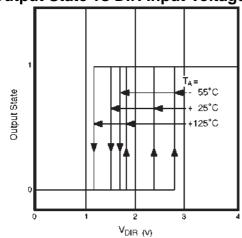
$\overline{V_{SS}}$	Logic Supply Voltage	1M10 Series	+4.75 to +5.25V
		1M12 Series	+7 to +36V
V_{C}	Driver Supply Voltage		+4.75 to +36V
	Logic Inputs		0 to +36V
	Output Current, DC	1Mxx / 2Mxx Series	±100mA
		3Mxx Series	±200mA
	Peak Output Current	1Mxx / 2Mxx Series	±125mA
		3Mxx Series	±250mA
T_{AMB}	Operating Ambient Temperature Range	1Mxx Series	-55 to +125°C
		2Mxx Series	-40 to +85°C
		3Mxx Series	0 to +70°C

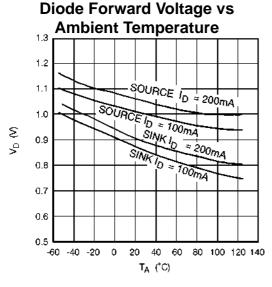
IP1M10 SERIES IP1M12 SERIES

ELECTRICAL CHARACTERISTICS (Over Full Operating Temperature Range)

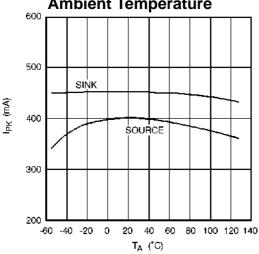
Parameter		Test Conditions		Min.	Тур.	Max.	Units	
Logic Supply Voltage	(Pin 3)	1M10 Series	$V_{SS} = +5.25V$	I _{LOADS} = 0		5	12	
			$V_{SS} = +5.25V$	I _{LOADS} = 100mA		8	20	
			$V_{SS} = +5.25V$	I _{LOADS} = 200mA		12	28	mA
		1M12 Series	V _{SS} = +36V	I _{LOADS} = 0		8	18	- IIIA -
Logic Supply Voltage	(Pin 3)		V _{SS} = +36V	I _{LOADS} = 100mA		1	25	
			V _{SS} = +20V	I _{LOADS} = 200mA		15	32	
Quiescent Bridge Curre	ent (Pin 2 or 6)		$I_{LOAD} = 0$			2.5	8	mA
		Falling			0.8	1.5	2	V
PWM Input Threshold	(Pins 4 and 12)	Rising			1.2	2.5	3	
		Hysterisis			0.4	1		
DIAMA Import Comment	(Pins 4 and 12)	Low	V _{IN} = 0			-20	-100	μА
PWM Input Current		High	V _{IN} = 36V			0.1	±10	
	(Pins 5 and 11)	Falling			0.8	1.5	2	V
DIR Input Threshold		Rising			1.2	2.3	3	
		Hysterisis			0.2	0.8		
DIP Input Current	(Pins 5 and 11)	Low	V _{IN} = 0			-20	-100	μА
DIR Input Current		High	V _{IN} = 36V			0.1	±10	
Total Saturation Voltage			$I_{LOAD} = 100 mA$			1.8	2.25	V
V _{SAT(SINK)} + V _{SAT(SOURCE)}			$I_{LOAD} = 200 mA$	3M10 / 3M12 Only		2.1	2.7	'
Diode Forward Voltage			I _{DIODE} = 100mA			1.1	1.4	V
			I _{DIODE} = 200mA			1.2	1.6	
Output Leakage Current Low			V _O = 0	V _C = 36V		1	100	
(Pins 1, 7, 8 and 14)		High	$V_O = V_C = 36V$			1	100	μΑ

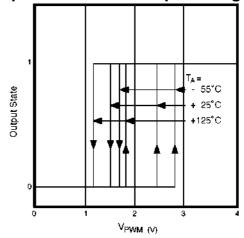
SWITCHING CHARACTERISTICS @ $T_{AMB} = 25$ °C

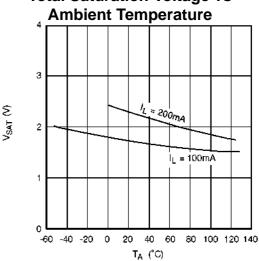

Parameter	Test Conditions	Min. Typ. Max.	Units
Sink Turn-On Delay	Δt : $V_i = V_{i(TH)}$ to $V_O = V_S/2$	1250	
Sink Current Rise Time	Δt : I _O = (0.1 to 0.9) I _{LOAD}	200	200
Sink Turn-Off Delay	Δt : $V_i = V_{i(TH)}$ to $V_O = V_S/2$	300	ns ns
Sink Current Fall Time	Δt : I _O = (0.9 to 0.1) I _{LOAD}	200	
Source Turn-On Delay	Δt : $V_i = V_{i(TH)}$ to $V_O = V_S/2$	800	
Source Rise Time	Δt : I _O = (0.1 to 0.9) I _{LOAD}	400	200
Source Turn-Off Delay	Δt : $V_i = V_{i(TH)}$ to $V_O = V_S/2$	1000	ns
Source Fall Time	Δt : I _O = (0.9 to 0.1) I _{LOAD}	500	
Sink to Source Deadtime		500	ne
Source to Sink Deadtime		250	ns

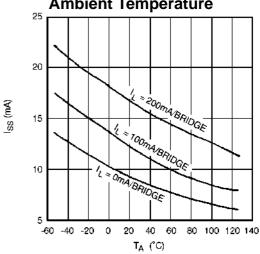

IP1M10 SERIES IP1M12 SERIES

TYPICAL PERFORMANCE CHARACTERISTICS — ERROR AMPLIFIER


Output State vs DIR Input Voltage


*DIR (V)


Peak Output Current vs Ambient Temperature


Output State vs PWM Input Voltage

Total Saturation Voltage vs

Logic Supply Current vs
Ambient Temperature

