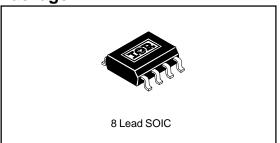
The IR1210 part number has been updated and changed to IR4426/IR4427/IR4428 Please see new data sheet Data Sheet No. PD60165-C

IR1210

DUAL LOW SIDE DRIVER

Features

- Gate drive supply range from 6 to 20V
- CMOS Schmitt-triggered inputs with pull-up
- Matched propagation delay for both channels
- Outputs out of phase with inputs


Description

The IR1210 is a low voltage, high speed power MOSFET and IGBT driver. Proprietary latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays between two channels are matched.

Product Summary

I_{O+/-} 1.5A / 1.5A V_{OUT} 6V - 20V t_{on/off} (typ.) 85 & 65 ns

Package

Block Diagram

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to GND. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
Vs	Fixed supply voltage	-0.3	25	
Vo	Output voltage -0.3	V _S + 0.3		V
V _{IN}	Logic input voltage (INA/N & INB/N)	-0.3	V _S + 0.3	
PD	Package power dissipation @ T _A ≤ +25°C	_	0.625	W
Rth _{JA}	Thermal resistance, junction to ambient	_	200	°C/W
TJ	Junction temperature	_	150	
T _S	Storage temperature	-55	150	°C
TL	Lead temperature (soldering, 10 seconds)	_	300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to GND.

Symbol	Definition	Min.	Max.	Units
٧s	Fixed supply oltage	6	20	
Vo	Output voltage	0	Vs	V
VIN	Logic input voltage (INA/N & INB/N)	0	Vs	
TA	Ambient temperature	-40	125	°C

DC Electrical Characteristics

 V_{BIAS} (V_{S}) = 15V, T_{A} = 25°C unless otherwise specified. The V_{IN} , and I_{IN} parameters are referenced to GND and are applicable to input leads: INA/N and INB/N. The V_{O} and I_{O} parameters are referenced to GND and are applicable to the output leads: OUTA and OUTB.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "0" input voltage (OUT=LO)	2.7	_	_		
V _{IL}	Logic "1" input voltage (OUT=HI)	_	_	0.8	V	
Voн	High level output voltage, V _{BIAS} -V _O	_	_	1.2		
V _{OL}	Low level output voltage, VO	_	_	0.1		
I _{IN+}	Logic "1" input bias current (OUT=HI)	_	5	15		V _{IN} = 0V
I _{IN-}	Logic "0" input bias current (OUT=LO)	_	-10	-30	μΑ	V _{IN} = V _S
IQS	Quiescent Vs supply current	_	100	200		V _{IN} = 0V or V _S
I _{O+}	Output high short circuit pulsed current	1.5	2.3	_		$V_{O} = 0V, V_{IN} = 0$
					A	PW ≤ 10 μs
l _{O-}	Output low short circuit pulsed current	1.5	3.3	—		$V_O = 15V$, $V_{IN} = V_S$
						PW ≤ 10 µs

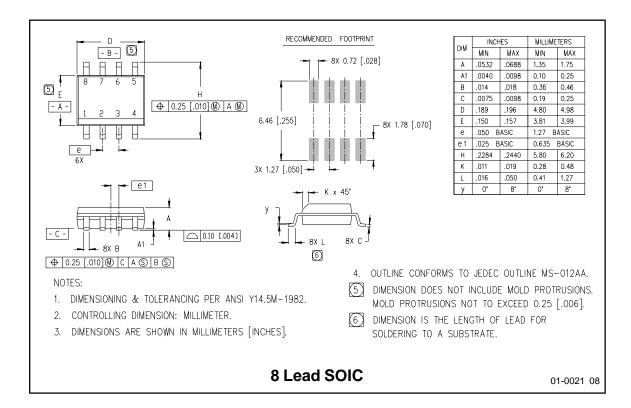
2 www.irf.com

Dynamic Electrical Characteristics V_{BIAS} (V_{S}) = 15V, C_{L} = 1000 pF, T_{A} = 25°C unless otherwise specified.

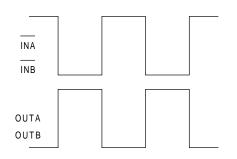
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
^t d1	Turn-on propagation delay	_	85	160	ns	figures 2 & 3
t _{d2}	Turn-off propagation delay	_	65	150		
t _r	Turn-on rise time	_	15	35		
t _f	Turn-off fall time	_	10	25	Ī	

Functional Block Diagram

Lead Assignment and Definitions


Lead Assignment and Demittons						
Symbol	Description					
Vs	Supply voltage	1		8		
GND	Ground	2	INA	OUTA 7		
INA	Logic input for gate driver output (OUTA), out of phase		1			
INB	Logic input for gate driver output (OUTB), out of phase	3	GND	V _S 6		
OUTA	Gate drive output A	4	INB	OUTB 5		
OUTB	Gate drive output B					

www.irf.com 3


ADVANCED INFORMATION

International

TOR Rectifier

4 www.irf.com

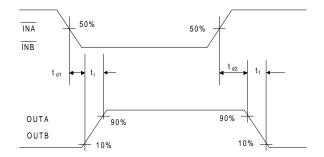


Figure 1. Timing Diagram

Figure 2. Switching Time Waveforms

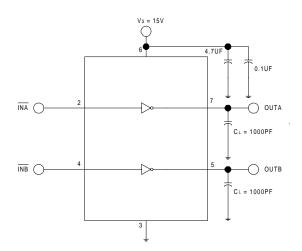


Figure 3. Switching Time Test Circuit

International

TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105