## International IER Rectifier

## Features

- Gate drive supply range from 6 to 20 V
- CMOS Schmitt-triggered inputs with pull-up
- Matched propagation delay for both channels
- Outputs out of phase with inputs


## Description

The IR1210 is a low voltage, high speed power MOSFET and IGBT driver. Proprietary latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays between two channels are matched.

DUAL LOW SIDE DRIVER
Product Summary

|  |  |
| :---: | :---: |
| lo+/- | $1.5 \mathrm{~A} / 1.5 \mathrm{~A}$ |
| Vout | $6 \mathrm{~V}-20 \mathrm{~V}$ |
| ton/off (typ.) | $85 \& 65 \mathrm{~ns}$ |

## Package



Block Diagram


## Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to GND. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

| Symbol | Definition |  | Min. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {S }}$ | Fixed supply voltage |  | -0.3 | 25 | V |
| $\mathrm{V}_{\mathrm{O}}$ | Output voltage | -0.3 | $\mathrm{V}_{\mathrm{S}}+0.3$ |  |  |
| $\mathrm{V}_{\text {IN }}$ | Logic input voltage (INA/N \& INB/N) |  | -0.3 | $\mathrm{V}_{\mathrm{S}}+0.3$ |  |
| $\mathrm{P}_{\mathrm{D}}$ | Package power dissipation @ $\mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C}$ |  | - | 0.625 | W |
| RthJA | Thermal resistance, junction to ambient |  | - | 200 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| TJ | Junction temperature |  | - | 150 | ${ }^{\circ} \mathrm{C}$ |
| Ts | Storage temperature |  | -55 | 150 |  |
| TL | Lead temperature (soldering, 10 seconds) |  | - | 300 |  |

## Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to GND.

| Symbol | Definition | Min. | Max. | Units |
| :---: | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{S}}$ | Fixed supply oltage | 6 | 20 |  |
| $\mathrm{~V}_{\mathrm{O}}$ | Output voltage | 0 | $\mathrm{~V}_{\mathrm{S}}$ | V |
| $\mathrm{V}_{\mathrm{IN}}$ | Logic input voltage (INA/N \& INB/N) | 0 | $\mathrm{~V}_{\mathrm{S}}$ |  |
| $\mathrm{T}_{\mathrm{A}}$ | Ambient temperature | -40 | 125 | ${ }^{\circ} \mathrm{C}$ |

## DC Electrical Characteristics

$\mathrm{V}_{\text {BIAS }}\left(\mathrm{V}_{S}\right)=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. The $\mathrm{V}_{\mathbb{I}}$, and $\mathrm{I}_{\mathrm{IN}}$ parameters are referenced to GND and are applicable to input leads: $\operatorname{INA} / N$ and $\operatorname{INB} / \mathrm{N}$. The $\mathrm{V}_{\mathrm{O}}$ and $\mathrm{l}_{\mathrm{O}}$ parameters are referenced to $G N D$ and are applicable to the output leads: OUTA and OUTB.

| Symbol | Definition | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Logic "0" input voltage (OUT=LO) | 2.7 | - | - | V |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Logic "1" input voltage (OUT=HI) | - | - | 0.8 |  |  |
| $\mathrm{V}_{\mathrm{OH}}$ | High level output voltage, $\mathrm{V}_{\text {BIAS }}-\mathrm{V}_{\mathrm{O}}$ | - | - | 1.2 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low level output voltage, $\mathrm{V}_{\mathrm{O}}$ | - | - | 0.1 |  |  |
| $\mathrm{I}_{\mathrm{N}+}$ | Logic "1" input bias current (OUT=HI) | - | 5 | 15 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ |
| In- | Logic "0" input bias current (OUT=LO) | - | -10 | -30 |  | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {S }}$ |
| IQS | Quiescent Vs supply current | - | 100 | 200 |  | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {S }}$ |
| $1{ }^{1}+$ | Output high short circuit pulsed current | 1.5 | 2.3 | - | A | $\begin{gathered} \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \\ \mathrm{PW} \leq 10 \mu \mathrm{~s} \end{gathered}$ |
| Io- | Output low short circuit pulsed current | 1.5 | 3.3 | - |  | $\begin{gathered} \hline \mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{S}} \\ \mathrm{PW} \leq 10 \mu \mathrm{~s} \end{gathered}$ |

## Dynamic Electrical Characteristics

$\mathrm{V}_{\mathrm{BI}} \mathrm{AS}\left(\mathrm{V}_{\mathrm{S}}\right)=15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

| Symbol | Definition | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{d} 1}$ | Turn-on propagation delay | - | 85 | 160 |  |  |
| $\mathrm{t}_{\mathrm{d} 2}$ | Turn-off propagation delay | - | 65 | 150 | n ns | figures $2 \& 3$ |
| $\mathrm{t}_{\mathrm{r}}$ | Turn-on rise time | - | 15 | 35 |  |  |
| $\mathrm{t}_{\mathrm{f}}$ | Turn-off fall time | - | 10 | 25 |  |  |

## Functional Block Diagram



## Lead Assignment and Definitions

| Symbol | Description | $\square$ | INA | OUTA |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{S}}$ | Supply voltage |  |  |  | 8 |
| GND | Ground | 2 |  |  | 7 |
| INA | Logic input for gate driver output (OUTA), out of phase |  |  |  |  |
| INB | Logic input for gate driver output (OUTB), out of phase | G | GND | Vs | 6 |
| OUTA | Gate drive output A | 4 | INB | OUTB | 5 |
| OUTB | Gate drive output B |  |  |  |  |



Figure 1. Timing Diagram



Figure 2. Switching Time Waveforms


Figure 3. Switching Time Test Circuit

