International **ICR** Rectifier Preliminary Data Sheet No. PD60130H

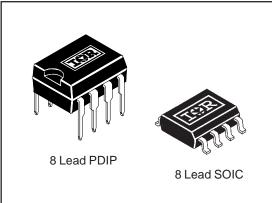
IR2122

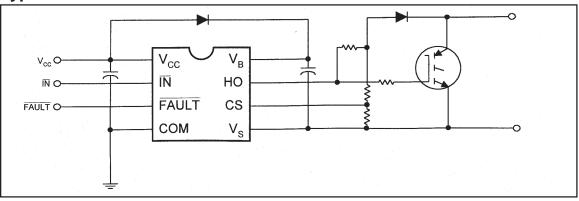
CURRENT SENSING SINGLE CHANNEL DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage
- dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout
- 5V Schmitt-triggered input logic
- FAULT lead indicates shutdown has occured
- Output out of phase with input

Description


The IR2122 is a high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs. The protection circuity detects over-current in the driven power transistor and terminates the gate drive voltage. An open drain FAULT signal is provided to indicate that an over-current shutdown has occurred. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side or low side configuration which operates up to 600 volts.


Typical Connection

Product Summary

VOFFSET	600V max.
I _O +/-	110 mA / 110 mA
Vout	10 - 20V
VCSth	500 mV
t _{on/off} (typ.)	250 & 200 ns

Packages

International

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units
VB	High Side Floating Supply Voltage		-0.3	625	
Vs	High Side Floating Offset Voltage		V _B - 25	V _B + 0.3	
V _{HO}	High Side Floating Output Voltage		V _S - 0.3	V _B + 0.3	
V _{CC}	Logic Supply Voltage		-0.3	25	V
VIN	Logic Input Voltage		-0.3	V _{CC} + 0.3	
V _{FLT}	FAULT Output Voltage		-0.3	V _{CC} + 0.3	
V _{CS}	Current Sense Voltage		V _S - 0.3	V _B + 0.3	
dV _s /dt	Allowable Offset Supply Voltage Transient		_	50	V/ns
PD	Package Power Dissipation @ $T_A \le +25^{\circ}C$	(8 Lead DIP)	—	1.0	w
		(8 Lead SOIC)	_	0.625	vv
R _{THJA}	Thermal Resistance, Junction to Ambient	(8 Lead DIP)	—	125	°C/W
		(8 Lead SOIC)	—	200	C/VV
TJ	Junction Temperature		_	150	
Τ _S	Storage Temperature		-55	150	°C
TL	Lead Temperature (Soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
VB	High Side Floating Supply Voltage	V _S + 13	V _S + 20	
Vs	High Side Floating Offset Voltage	Note 1	600	
V _{HO}	High Side Floating Output Voltage	Vs	VB	
Vcc	Logic Supply Voltage	13	20	V
VIN	Logic Input Voltage	0	V _{CC}	
V _{FLT}	FAULT Output Voltage	0	V _{CC}	
V _{CS}	Current Sense Signal Voltage	VS	V _S + 5	
TA	Ambient Temperature	-40	150	C

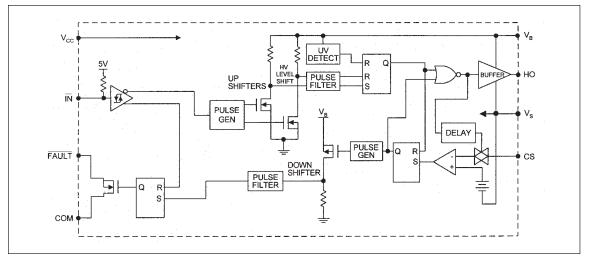
Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_BS.

International **tor** Rectifier

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.

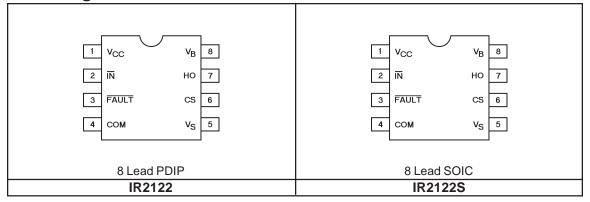
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay	—	250	-		$V_{\rm S} = 0V$
t _{off}	Turn-Off Propagation Delay	—	200	-		$V_{\rm S} = 600 V$
tr	Turn-On Rise Time		250	-		C _L = 1000 pF
t _f	Turn-Off Fall Time	-	250	-	ns	C _L = 1000 pF
t _{bl}	Start-Up Blanking Time	500	900	-		
t _{cs}	CS Shutdown Propagation Delay	—	350	-		
t _{flt}	CS to FAULT Pull-Up Propagation Delay	—	450	—		

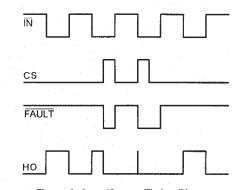

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to V_S .

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "0" Input Voltage (OUT = LO)	3.0	_	_		$V_{\rm CC} = 10V$ to 20V
V _{IL}	Logic "1" Input Voltage (OUT = HI)	—	—	0.8	V	$V_{CC} = 10V$ to 20V
V _{CSTH+}	CS Input Positive Going Threshold	350	500	650	v	$V_{CC} = 10V$ to 20V
V _{OH}	High Level Output Voltage, VBIAS - VO	_	—	100		IO = 0A
V _{OL}	Low Level Output Voltage, VO	—	—	100	mV	IO = 0A
I _{LK}	Offset Supply Leakage Current	—	—	50		$V_B = V_S = 600V$
I _{QBS}	Quiescent V _{BS} Supply Current	_	150	350		$V_{IN} = 0V \text{ or } 5V$
I _{QCC}	Quiescent V _{CC} Supply Current	_	60	120		$V_{IN} = 0V \text{ or } 5V$
I _{IN+}	Logic "1" Input Bias Current	—	7.0	15	μA	$V_{IN} = 0V$
I _{IN-}	Logic "0" Input Bias Current	—	—	1.0		$V_{IN} = 5V$
I _{CS+}	"High" CS Bias Current	_	—	1.0		$V_{CS} = 3V$
I _{CS-}	"High" CS Bias Current	_	—	1.0		$V_{CS} = 0V$
V _{BSUV+}	V _{BS} Supply Undervoltage Positive Going Threshold	10.0	11.4	13.0		
V _{BSUV-}	V _{BS} Supply Undervoltage Negative Going Threshold	9.5	10.4	12.5	V	
I _{O+}	Output High Short Circuit Pulsed Current	110	130	_	m ($\label{eq:VO} \begin{split} V_O &= 0 V, V_{IN} = 0 V \\ PW &\leq 10 \; \mu s \end{split}$
I _{O-}	Output Low Short Circuit Pulsed Current	110	130	_	mA	$V_O = 15V, V_{IN} = 5V$ $PW \le 10 \ \mu s$

International


Functional Block Diagram


Lead Definitions

Le	Lead		
Symbol	Description		
V _{CC} ĪN	Logic and gate drive supply		
ĪN	Logic input for gate driver output (HO), out of phase with HO		
FAULT	Indicates over-current shutdown has occurred, negative logic		
COM	Logic ground		
VB	High side floating supply		
HO	High side gate drive output		
VS	High side floating supply return		
CS	Current sense input to current sense comparator		

Lead Assignments

International

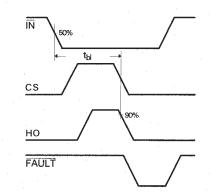
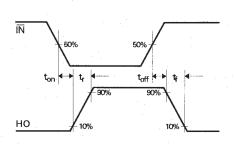



Figure3. Start-up Blanking Time Waveform Definitions

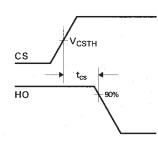


Figure 4. CS Shutdown Waveform Definitions

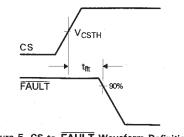
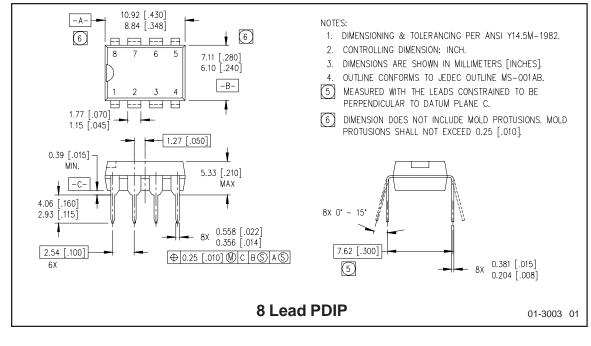
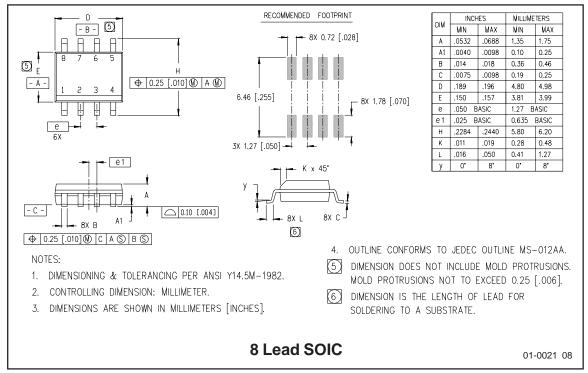




Figure 5. CS to FAULT Waveform Definitions

International

International

 WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2, Tel: (905) 453-2200

 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

 IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086

 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

 http://www.irf.com/
 Data and specifications subject to change without notice.