

REMOTE CONTROL PREAMPLIFIER

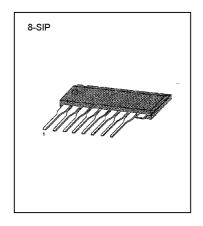
The KA2181 is a silicon monolithic integrated circuit designed for a remote control preamplifier of infrared signals.

This device has features of low power, high sensitivity and wide supply voltage.

FUNCTIONS

- AMP ABLC LIMITER & LEVEL SHIFT
- PEAK DET SHAPING

FEATURES


 $\begin{tabular}{ll} \bullet \mbox{ Wide operation voltage} & \mbox{V_{CC}=$6 to 14.4V} \\ \bullet \mbox{ Low power consumption} & \mbox{I_{CC}=$2.5mA Typ.} \\ \bullet \mbox{ High input sensitivity} & \mbox{$50_{L}N_{P,P}$ Typ.} \\ \end{tabular}$

• Peak detector

• Small size package 8-SIP

A minimum number of parts are required

• Designed for use with the KS5803 remote control transmitter IC.

ORDERING INFORMATION

BLOCK DIAGRAM

Device Package		Operating Temperature		
KA2181	8-SIP	-20℃~+75℃		

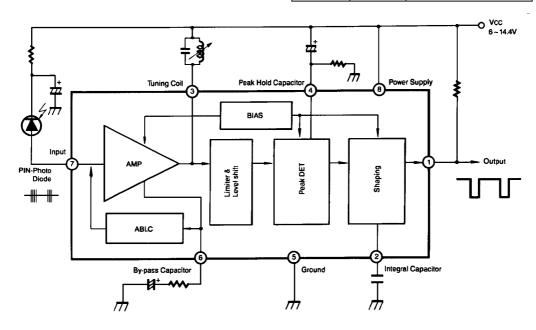


Fig. 1

ABSOLUTE MAXIMUM RATINGS (T_A=25 $^{\circ}$ C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	15	V
Power Dissipation	P _D	270	mW
Operating Temperature	T _{OPR}	-20~+75	$^{\mathcal{C}}$
Storage Temperature	T _{STG}	-45~+125	

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Power Supply	V _{cc}	6.0	8.5	14.4	V
Input Frequency	f _{IN}	30	_	50	KHz

ELECTERICAL CHARACTERISTICS

(T_A=25 $^{\circ}$ C , V_{CC}=8.5V, f_{IN}=40KHz)

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Supply Current	Icc		1.5	2.5	3.5	mA
Input Terminal Voltage	V _{IN} 1		2.1	2.6	3.1	V
Input Terminal Voltage	V _{IN} 2	I _{IN} =70μA	3.4	4.1	4.9	V
1st Stage Voltage Gain	A _{VL}	#7-#3, V _{OUT} =500mV _{P-P}	_	60	_	dB
Detection Input Voltage	υ _{IN}		_	50	100	μN _{P-P}
Input Impedance	ΥIN		40	60	80	kΩ
Output Voltage	V _{OL}	I _{OL} =0.1mA, υ _{IN} =7mV _{P-P}	_	-	0.5	V
Output Leakage Current	I _{OH}	V _{OH} =14.4V	_	_	2	μΑ
Noise		Input Open	Output	Terminal	is not fall	

TYPICAL APPLICATION CIRCUITS

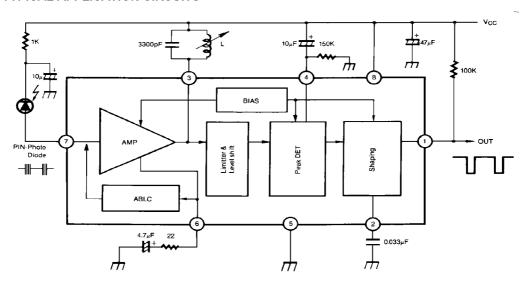


Fig. 2

TEST CIRCUITS

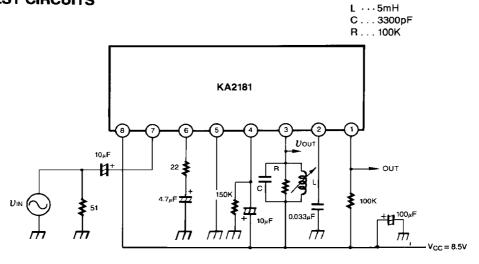
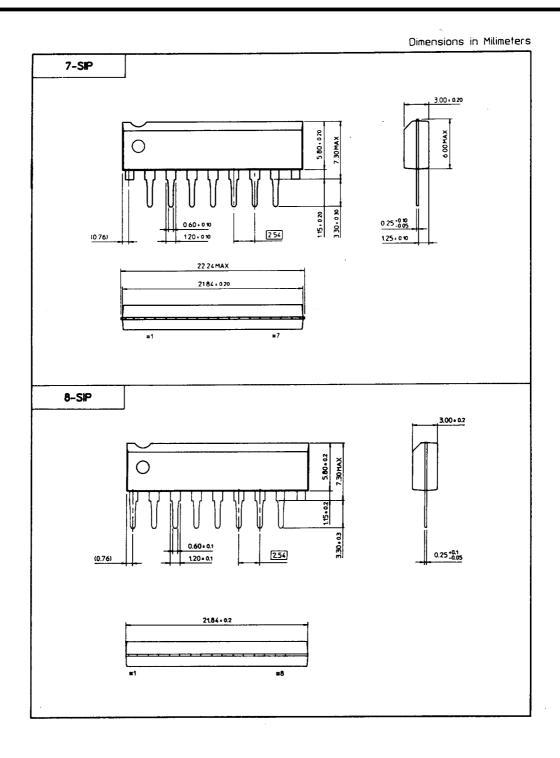



Fig. 3

