INTRODUCTION

The KA22130 is a monolithic integrated circuit consisting of preamplifier ALC circuit, power amplifier in 16 pin plastic dual in line package.

FEATURES

- Suitable for play and recording mono cassette tape recorder.
- Wide operating supply voltage range: $V_{CC} = 4V \sim 1.2V$ High gain preamplifier and power amplifier.
- Output power of power amplifier state
- P_{O} =1W at V_{CC} = 6V, $R_{\text{L}}\text{=}4\Omega,$ THD = 10%.
- Soft tone quality at the time of output saturation.
- Wide ALC range and small variation in output voltage.
 Small shock noise at the time of power on/off due to built-in prevention circuit.
- Variable monitor capability due to recording amplifier consisting of preamplifier alone.
- Minimum number of external parts required.

16-DIP-300A

ORDERING INFORMATION

Device	Package	Operating Temperature			
KA22130	16-DIP-300A	-20°C~ +70°C			

BLOCK DIAGRAM

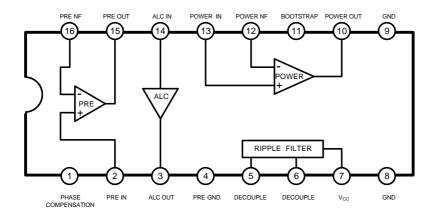


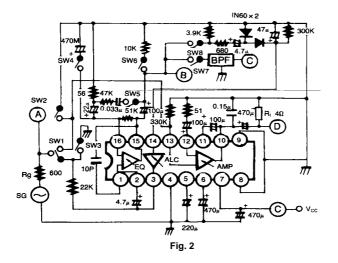
Fig. 1.

1 CHIP TAPE RECORDER

1 CHIP TAPE RECORDER

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC}	13	V
Power Dissipation	PD	1.5	W
Operating Temperature Storage	T _{OPR}	-20 ~ +70	°C
Temperature	T _{STG}	-40 ~ +150	°C

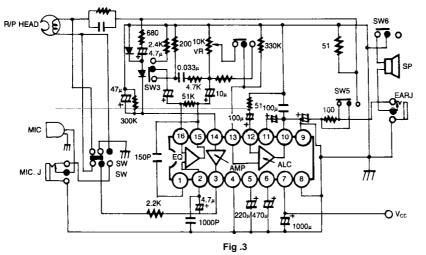

ELECTRICAL CHARACTERISTIC

(T_a = 25°C, V_{CC} = 6V, f = 1KHz, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent Circuit Current	Iccq	$V_{CC} = 6V, V_1 = 0$		18	30	mA
		$V_{CC} = 9V, V_1 = 0$		23	40	mA
Pre Amplifier						
Open Loop Voltage Gain	G _{VO}	Open loop		85		dB
Closed Loop Voltage Gain	G _{VC}	Closed loop, Play		40		dB
Output Voltage		THD = 1%, Play	0.9	1.2		V
Input Resistance	Rı		21	30		KΩ
Equivalent Input Noise Voltage	V _{NI}	Play		1.0	2.0	μV
ALC Input Level	V _{I(ALC)}	THD = 1%, Rec	-20	-12		dBm
Power Amplifier						
Closed Loop Voltage Gain	G _{VC}	R _F =51Ω	43	45	47	dB
		V_{CC} = 6V, R $_{\perp}$ 4 Ω , THD = 10%	0.7	1.0		W
Output Power	P ₀	$V_{CC} = 7.5V, R_{L} = 4\Omega$	1.0	1.5		W
		THD = 10%				
		$V_{CC} = 9V, R_L = 4\Omega, THD = 10\%$	1.7	2.2		W
Total Harmonic Distortion	THD	P ₀ = 250mW		0.3	1.5	%
Input Resistance	RI			30		KΩ
Output Noise Voltage V _{NO}		$R_{G} = 10K\Omega$		0.6	1.8	mV
Ripple Rejection Ratio	RR	$R_G=0\Omega$, $V_R=150rnV$, f = 100Hz	40	45		dB

1 CHIP TAPE RECORDER

TEST CIRCUIT


TEST METHOD

	aracteristic	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8	Test Point	Test Method
Power Amplifier	Icca		on	on	off	on	on	off	off		Test Circuit current
dm	G _{VC}	2	off	off	off	on	on	off	off	A.D.	G _{VC} =20 log V _O /V _I (dB)
er A	Po	2	off	off	off	on	on	off	off	D	Test output voltage at THD = 10%
OW6	THD	2	off	off	off	on	on	off	off	D	Test THD at output voltage $V_0 = 1V$
_ ₽_	V _{NO}		on	off	off	on	on	off	off	D	Test output noise voltage
-	RR		on	off	off	on	on	off	off	D	$\label{eq:RR} RR = 20 \log V_{RO}/150 \mbox{ (dB)}$ Test output ripple voltage (V_{RO})
Amplifier	G _{VO}	1	off	off	on	off	on	off	off	A.B	$A_{VO} = 20 \log V_O/V_I(dB)$
Am ^A	Vo	1	off	off	off	on	on	off	off	В	Test output voltage at THD = 1%
Pre /	V _{NI}		off	on	off	on	on	on	off	С	Convert output noise voltage at R_G = 2.2K Ω , V_{NI} = V_{NO}/G_V
	V _{I(ALC)}	1	off	off	off	off	off	off	on	A.B	Test input voltage at THD = 1%

1 CHIP TAPE RECORDER

APPLICATION CIRCUIT

2. Radio cassette tape recorder

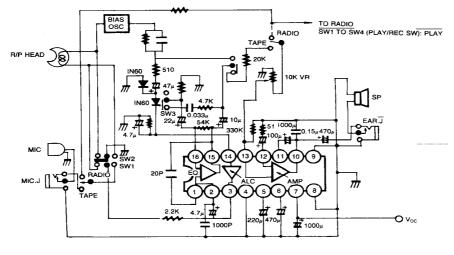


Fig. 4

