
DUAL LOW NOISE EQUALIZER AMPLIFIER

The KA2221 is a monolithic integrated circuit consisting of 2-channel low noise amplifiers and regulated power supply for car stereos.

FEATURES

- Suitable for car stereos.
- Low noise amplifier.
- Voltage regulator included.
- Good ripple rejection.
- High channel separation (65dB Typ).
- Minimum number of external parts required.

ORDERING INFORMATION

Device	Package	Operating Temperature
KA2221	8 SIP	-20°C~+70°C

BLOCK DIAGRAM

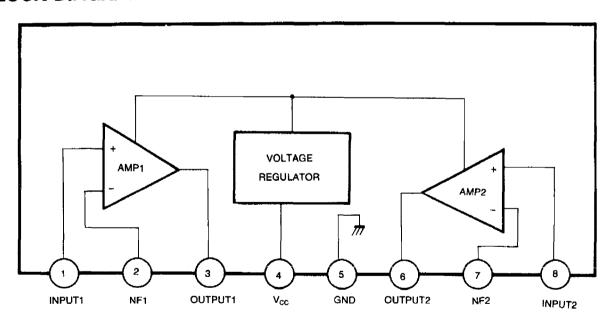


Fig. 1

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

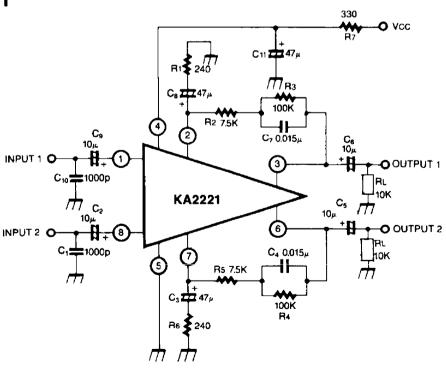
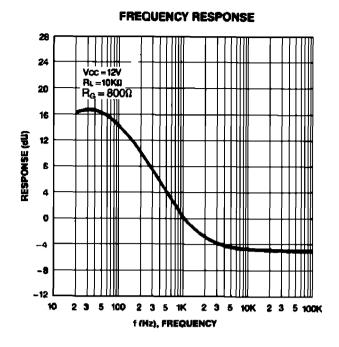
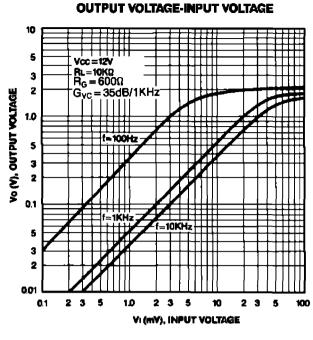
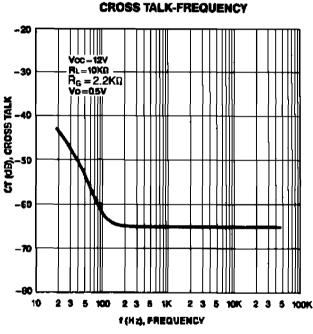
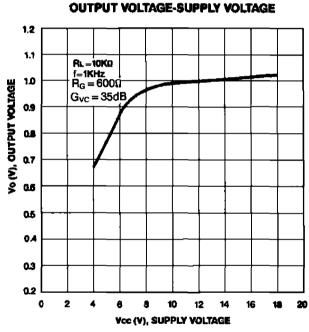
Characteristic	Symbol	Value	Unit
Supply Voltage Power Dissipation Operating Temperature Storage Temperature	V _{CC}	18	V
	P _D	200	mW
	T _{OPR}	- 20 ~ + 70	°C
	T _{STG}	- 40 ~ + 125	°C

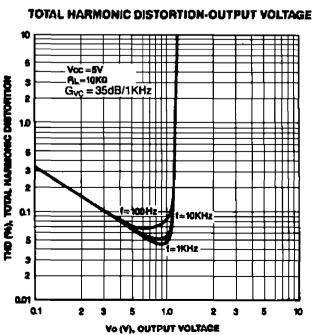
ELECTRICAL CHARACTERISTICS

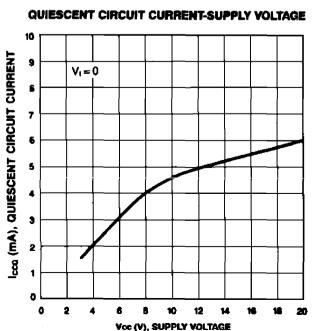
 $(T_a = 25 \degree C, V_{CC} = 12V, R_L = 10K\Omega, f = 1KHz, NAB, unless otherwise specified)$

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent Circuit Current	I _{cca}	V ₁ = 0		6.0	9.0	mA
Open Loop Voltage Gain	G _{vo}		65	80		dB
Closed Loop Voltage Gain	G _{vc}	V _O = 0.5V	33	35	37	dB
Output Voltage	Vo	THD=1%	0.6	1.0		V
Total Harmonic Distortion	THD	V _O = 0.5V		0.1	0.3	%
Input Resistance	R _i			150		ΚΩ
Equivalent Input Noise Voltage	V _{NI}	$R_G = 2.2K\Omega$ BW (- 3dB) = 15Hz ~ 30KHz		1.0	2.0	μ٧
Cross Talk	СТ	$R_G = 2.2K\Omega$	50	65		dB

TEST CIRCUIT


Fig. 2



APPLICATION INFORMATION

External Components (Refer to test circuits)

C₁ (C₁₀): Noise filter

These capacitors prevent radio interference in strong electric fields. The recommended value is 1000pF.

C₂ (C₉): Input coupling capacitor

The recommended value is 10μ F. If made too small, the low frequency characteristics will change for the worse, but too large a value will increase the rising time when power is applied.

C₃ (C₈): Negative feedback capacitor

The lower cut-off frequency depends on the value of these capacitors and is determined as follows:

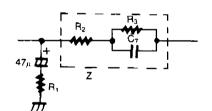
$$C_3 (C_8) = \frac{1}{2\pi f_L \cdot R_1 (R_8)}$$

fi: Low cut-off frequency

If the value of these capacitors is made larger, the starting time of amplifier is delayed further.

C₅ (C₆): Output coupling capacitor

The recommended value is $10\mu F$.


R₂, R₃, C₇ (R₄, R₅, C₄): Equalizer network

The time constants of standard NAB characteristic are follow.

Tape speed	9.5cm/sec	4.75cm/sec
$C_7 (R_2 + R_3)$	3180μsec	1590μsec
R_2, C_7	90μsec	120μsec

R₁ (R₆): Feedback component

The closed loop gain is determined approximately by the following relationship.

$$G_{VC} = 20 \log \frac{Z + R_1}{R_1}$$
 (dB)

$$Z = R_2 + R_3 // C_7$$

^{*} Choose R₂, R₃, (DC resistance of NAB element) as $100 \mathrm{K}\Omega$ approximately.