
DUAL EQUALIZER AMPLIFIER WITH ALC

The KA2224 is a monolithic integrated circuit consisting of a dual equalizer amplifier with ALC, and it is suitable for stereo radio cassette tape recorders.

FEATURES

- Dual equalizer amplifier with built-in ALC circuit
- Low noise; $V_{NI} = 1.0 \mu V$ (Typ)
- High open loop voltage gain; 80 dB (Typ)
- Wide operating supply voltage range; $V_{cc} = 4.5V \sim 14V$
- Good ALC response balance between channels
- Not necessary the input coupling capacitor
- Not necessary diode or transistor for ALC
- · Built in power supply muting circuit
- Minimum number of external parts required

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature					
KA22241	9 SIP	– 20°C ~ + 75°C					

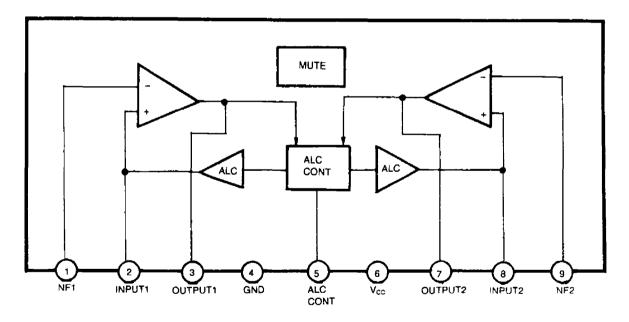
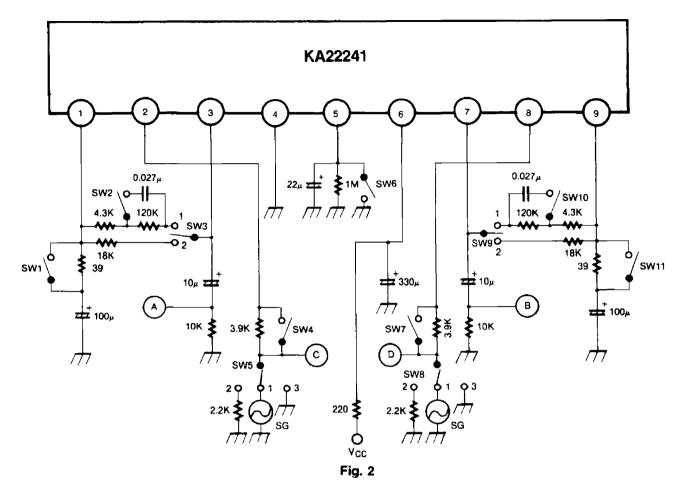


Fig. 1

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

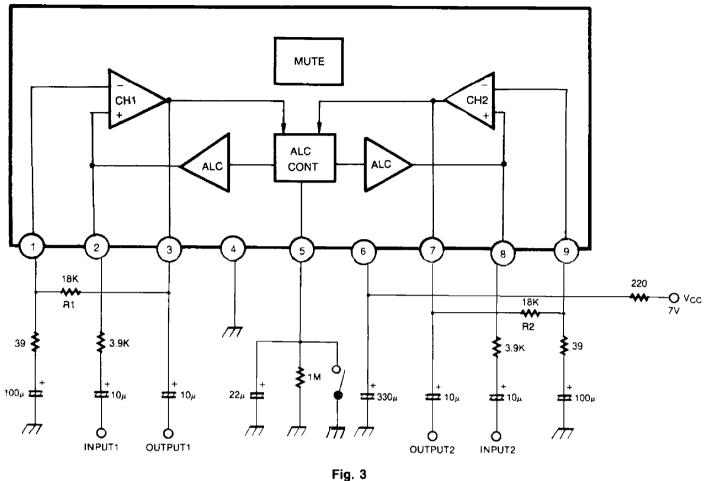
Characteristic	Symbol	Value	Unit		
Supply Voltage	V _{cc}	16	v		
Power Dissipation	PD	*550	mW		
Operating Temperature	TOPR	- 20 ~ + 75	°C		
Storage Temperature	T _{STG}	- 40 - + 125	°C		


*: Derated avobe Ta = 25°C in the propotion of 5.5mW/°C

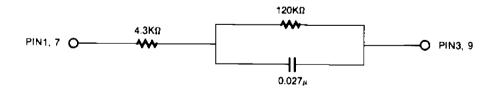
ELECTRICAL CHARACTERISTICS

(Ta = 25°C, V_{cc} = 7V, f = 1KHz, unless otherwise specified)

Characteristic	Symbol Test Conditions		Min	Тур	Max	Unit
Quiescent Circuit Current	Icca	V ₁ = 0	1.5	3.5	4.5	mA
Open Loop Voltage Gain	Gvo	$V_{o} = 0.3V$	70	80		dB
Closed Loop Voltage Gain	Gvc	V _o = 0.3V	45	48	50	dB
Output Voltage	V.	THD = 1%	0.6	1.2		V
Total Harmonic Distortion	THD	$V_{o} = 0.3V$		0.1	0.3	%
Equivalent Input Noise Voltage	V _{NI}	$R_{G} = 2.2K\Omega$, BW (-3dB) = 20Hz ~ 20KHz		1.0	2.0	μV
Input Resistance	R		15	25	45	KΩ
ALC Range		R _G ≈ 3.9K, THD = 10%	40	45		dB
ALC Balance	CBALC	V ₁ = 1mV		0	2.5	dB


TEST CIRCUIT

TEST METHOD


Syn	nbol	S1	S2	S3	S4	S5	S6	\$7	S 8	S 9	S10	S11
lcco		ON	OFF	1	ON	3	ON	ON	3	1	OFF	ON
Gvo		ON	OFF	1	ON	1	ON	ON	3	1	OFF	ON
G _{vc}	CH-1	OFF	ON	1	ON	1	ON	ON	3	1	OFF	ON
THD	CH-1	OFF	ON	1	ON	1	ON	ON	3	1	OFF	ON
٧	CH-1	OFF	ON	1	ON	1	ON	ON	3	1	OFF	ON
V _{NI}	CH-1	OFF	ON	1	ON	2	ON	ON	3	1	OFF	ON
	CH-2	ON	OFF	1	ON	3	ON	ON	2	1	ON	OFF
ΔV_{ALC}	CH-1	OFF	OFF	2	OFF	1	OFF	ON	3	1	OFF	ON
CB _{ALC}		OFF	OFF	2	OFF	1	OFF	OFF	1	2	OFF	OFF

APPLICATION CIRCUIT

NOTE

ON recording, connect the time constant circuit as shown below, instead of R1, R2 of Pins 1-3, 7-9, which are used in the NAB.

