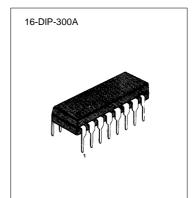
AM/FM 1 CHIP RADIO

INTRODUCTION

KA22427C is a monolithic integrated circuit designed for the portable AM/FM radio or AM/FM clock radios.


FUNCTIONS

• AM RF & MIX

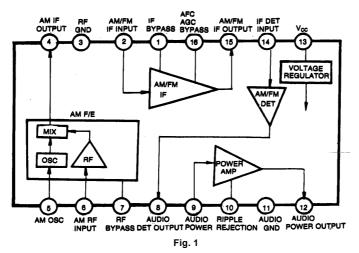
- •AM Local OSC • AM/FM IF AMP
- AM AGC
 AM/FM I
 AM/FM DET
 Audio Pc
- Regulator
- Audio Power AMP
 FM AFC Control
- lator I

FEATURE

- Portable AM/FM 1-chip radio
- Wide operating supply voltage range: V_{CC} = 3V \sim 12V (Approximately) (Depending on the internal regulator tolerance)
- Recommended operating suply voltage: $V_{CC} = 4.5V \sim 9V$

ORDERING INFORMATION

		Device Package		Operating Temperature	
			KA22427C	16-DIP-300A	20°C ~+70°C
	4.5V	6.0V	7.5V	9.OV	Line Operated
8Ω	0	0	0	х	Х
16Ω	0	0	0	0	Х
45Ω	0	0	0	0	0


• On using AC line as an internal shunt regulator mode, it is possible to use low cost application without a

transformer (approximately 42mA).

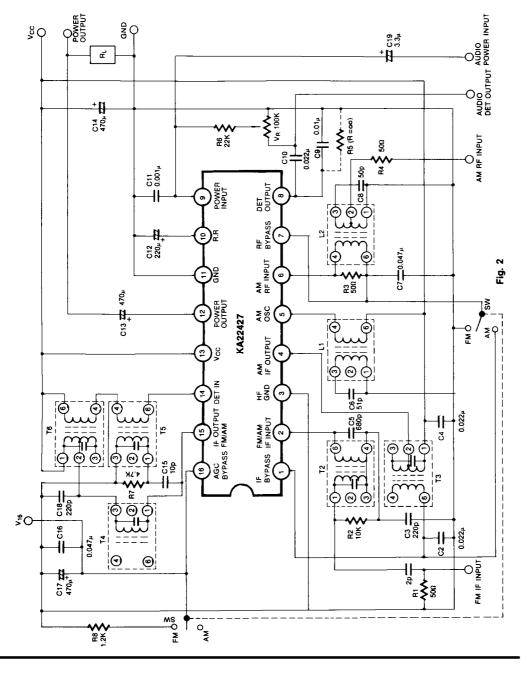
• IF AMP gain is determined by DC voltage appeared at IC Pin 16.

• Power output: P_{0} =0.28W (Min.) at THD =10% (V_{CC} = 5.5V/8 $\!\Omega).$

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Ta = 25)

Character istic	Symbol	Value	Unit
Supply Voltage	V _{cc}	13	V
Power Dissipation	PD	600	mW
Supply Current	Icc	44	mA
Thermal Resistance Junction to Ambient	R _{EJA}	100	°C /W
Operating Temperature	T _{OPR}	-20 ~ +70	°C
Storage Temperature	T _{STG}	-55 ~ +150	°C


ELECTRICAL CHARACTERISTICS

(Ta =25°C, V_{CC} = 5.5V, fm = 1KHz, AM: f=1MHz, 30% Mod, FM: f =10.7MHz Δf = 22.5KHz, Unless otherwise specified)

Characteristic		Symbol	Test Conditions	Min	Тур	Max	Unit
Qulescent Circuit Current		lcca	SW: FM, $V_{CC} = 3V$ SW: FM, $V_{CC} = 9V$	7 10	12 17	17 23	mA
FM	Pin 16 Terminal Voltage	V ₁₆ (FM)	SW: FM, V _{cc} = 9V, V _i = 0	2.0	2.4	3.1	V
-3dB Limiting Sensitivity		V _{I(LIM)}	SW: FM, -3dB V ₁₆ = 2.4V, V _R Min		57		dB
	Internal Regulated Vtg.	Vcc	SW: AM, I _{CC} = 42mA	12	13.2	14.0	V
	Pin 16 Voltage	V ₁₆ (AM)	SW: AM, $V_{CC} = 9V$, $V_I = 0$	1.4		1.9	V
AM	Maximum Sensitivity	S _{MAX}	SW: AM, $V_{CC} = 12V$ $V_I = 37 dB\mu$, $R_L = 8\Omega$	1.5	3.0		V
	Signal to Noise Ratio	S/N	$V_1 = 37.5 dB\mu$, $R_L = 8\Omega$ $P_0 = 50 mW$	15	20		dB
	Output Power	Po	f = 1KHz, THD = 10% V _R Min, R _L = 8Ω	0.28			W
PWR AMP	Total Harmonic Distortion THD		$I_{CC} = 42mA, R_L = 45\Omega$ f = 1KHz, V ₀ = 2V V _R Min		0.5	4.0	%
	Voltage gain	Gv	f = 1kHZ, R _L = 8Ω P _O = 50mW		41		dB

TEST CIRCUIT

APPLICATION INFORMATION - EXTERNAL COMPONENTS

Parts		-	Influence			
Number	Purpose	Typical	Smaller Than Typ	Greater Than Typ		
R5	AM Gain Control	47KΩ (33K ~∞)	Low AM Gain	AGC Distortion Increase, High Gain		
R7	FM Detector Damper	4.7ΚΩ	Low Detector Output, Stable IF Gain, Low FM Gain	Sharp IF AMP Curve		
R8	FM Gain Adjust	470	Low FM Gain	High Gain, but Noise Increase		
C2	IF Bypass	0.022µF	Should Not Be Less Than $0.005 \mu F$	High IF Gain, S/N Ratio Degrade		
C4	IF Filter	0.022µF	Removal May Cause IF Oscillation	No Influence		
C7	AM Bypass	0.047µF	Low Gain	Using over 1µF Wil Cause FM Distortion at Small Signal		
C9	Detector Filter	0.01µF	Unstable IF AMP Oscillation	Poor FM Frequency Response		
C10	Audio Coupling	0.022µF	Lower Sensitivity, Poor Low Frequency Response	Bass Boost Affects De-emphasis Curve		
C11	Audio Input High-Cut	0.001µF	Audio Oscillation	Poor Response		
C12	Ripple Filter	220µF	Poor Frequency Response & Low Gain	Improve AC Hum		
C13	Audio Output Coupling	470µF	Poor Low Frequency Response	Can Achieve Optimum Output Power		
C14	Power Line Filter	470µF	Poor AC Hum	Improve AC Hum		
C15	FM Detector Phase-Shift	10pF	Narrow IF Bandwidth	Wide IF Bandwidth		
C16	High Freq. (IF) Bypass	0.047µF	Removal Will Cause FM Oscillation	No Influence		
C17	AN AGC Time Constant and High Frequency (IF) Bypass	0.047µF	Not Recommend to Charge			

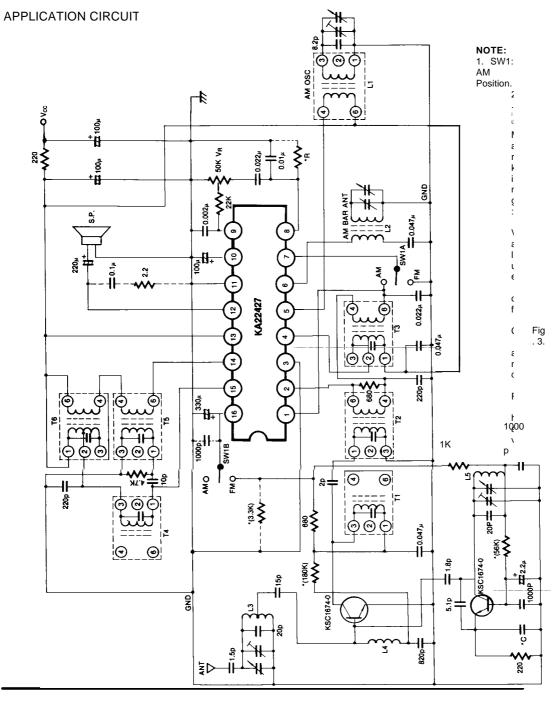
FUNCTION DESCRIPTION (Pin 16 DC Voltage)

1. IF Gain Grouping Table

(1) Test Condition: $V_{CC} = 9V$ (Pin 13). Pin 8 resistance (AM) =47K Ω Pin 16 resistance (FM) = 1.2K Ω

(2) Grouping Table

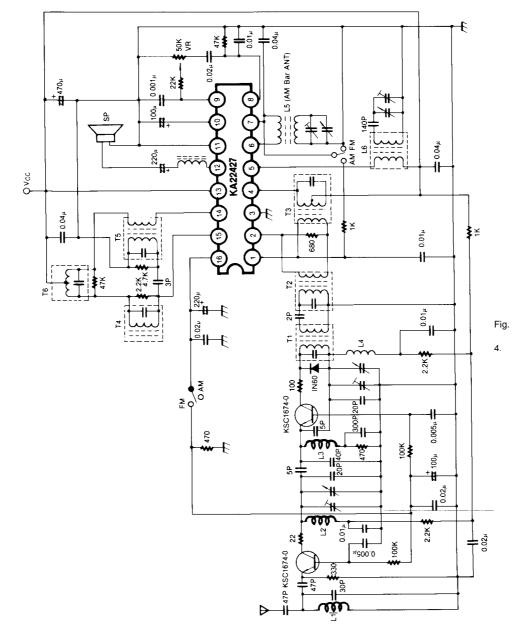
V16(AM) V16(FM)	1.4 - 1.7V
2.4 - 2.85V	2B


2. IF gain is determined by DC voltage appeared at IC Pin 16. The DC voltage at Pin 16 to the following values: $AM = 1.4 \sim 1.65V$ (DC) $FM = 1.9 \sim 2.10V$ (DC)

AM gain can be adjusted by the loading resistor value of Pin 8 (AM) from 33K Ω to infinity. FM gain can be adjusted by the loading resistor value of Pin 16 (FM) from 3K Ω to 680Ω . Recommended resistance (Pin 8, Pin 16).

Pin 8 (AM) = 47KΩ

Pin 16 (FM) = 470Ω



COIL SPECIFICATION 1

Coil No.	f	Qo	Turns	6	Co	Connections
T1	10.7MHz	120	1-3	8T	150pF	
T2	10.7MHz	70min	1-3 4-6	11T 2T	75±5pF	
T3 (T6)	455KHz	80min	1-2 2-3 4-6	91T 55T 6T	180±5pF	
T4	10.7MHz	45min	1-3	11T	82±3pF	
Т5	10.7MHz	25min	1-3 4-6	7T 7T	180pF	
L1	AM Local Oscillator	90min	1-3 4-6	86T 7T		
L2	AM ANT	200	1-2 (L = 560 μ) _H 3-4	138T 9T		Core: 10 mm ø × 55 mm
L3	FM ANT		0.8 mmø UEW TAP	5T 0.5T		(1) (2) (3) (4) - V.C GND Pin 6 GND
L4	Тгар		0.32 mmø UEW	10T		7 mm 5 mm
L5	FM Oscillator		0.8 mmø UEW	4T	5	000 1 5 mm
L	1	L	1	1		7 mm + 5 mm

APPLICATION CIRCUIT 2

AM/FM 1 CHIP RADIO

COIL SPECIFICATION 2

Coil No.	f	Q	Turns		C.L.	Connections
T1	10.7MHz	90	1-3 4-6	113	82pF	
Τ2	10.7MHz	60	1-3 4-6	52	390 pF	
ТЗ	455 KHz	100	1-2 2-3 4-6	127 28 10	180 pF	
T4	10.7 MHz	45(Min)	1-3	11	82 pF	
Т5	10.7 MHz	25(Min)	1-3 4-6	77	180 pF	
Т6	455 KHz	100	1-2 2-3	50 50	390 pF	
L6	796KHz	100	1-3 4-6	100 10	360µН	

